Math, asked by SarcasticBunny, 2 months ago

If ( x - 1 )¹⁰⁰ = a₀ + a₁x + a₂x² .... + a₁₀₀x¹⁰⁰

Then find :-
i ) The value of a₀
ii ) a₁ + a₂ + a₃ + a₄ .... + a₁₀₀

Answers

Answered by mathdude500
10

\large\underline{\sf{Given- }}

  • ( x - 1 )¹⁰⁰ = a₀ + a₁x + a₂x² .... + a₁₀₀x¹⁰⁰

\large\underline{\sf{To\:Find - }}

  • (i) a₀

  • (ii) a₁ + a₂ + a₃ + a₄ .... + a₁₀₀

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: {(x - 1)}^{100} = a_0 + a_1x + a_2 {x}^{2} +  -  -  -   + a_{100} {x}^{100}

Now, to get the value of a₀.

Substitute x = 0 in the given equation, we get

\rm :\longmapsto\: {(0 - 1)}^{100} = a_0 + a_1(0) + a_2 {(0)}^{2} +  -  -  -   + a_{100} {(0)}^{100}

\rm :\longmapsto\: {(- 1)}^{100} = a_0

We know,

\underbrace{ \boxed{ \bf \:  {( - 1)}^{even \: natural \: number} = 1}}

So,

\bf\implies \:a_0 = 1

Now,

To find the value of a₁ + a₂ + a₃ + a₄ .... + a₁₀₀

We have given that,

\rm :\longmapsto\: {(x - 1)}^{100} = a_0 + a_1x + a_2 {x}^{2} +  -  -  -   + a_{100} {x}^{100}

On substituting x = 1, we get

\rm :\longmapsto\: {(1 - 1)}^{100} = a_0 + a_1(1) + a_2 {(1)}^{2} +  -  -  -   + a_{100} {(1)}^{100}

\rm :\longmapsto\: {(0)}^{100} = a_0 + a_1 + a_2  +  -  -  -   + a_{100}

\rm :\longmapsto\:  a_0 + a_1 + a_2  +  -  -  -   + a_{100} = 0

As, we proved above

\rm :\longmapsto\:a_0 = 1

So, on substituting the value of a₀, we get

\rm :\longmapsto\:  1 + a_1 + a_2  +  -  -  -   + a_{100} = 0

\rm :\longmapsto\:   a_1 + a_2  +  -  -  -   + a_{100} = 0 - 1

\rm :\longmapsto\:   a_1 + a_2  +  -  -  -   + a_{100} = - 1

Hence,

\rm :\longmapsto\: If \: {(x - 1)}^{100} = a_0 + a_1x + a_2 {x}^{2} +  -  -    + a_{100} {x}^{100}

then

\rm :\longmapsto\:a_0 = 1

and

\rm :\longmapsto\:   a_1 + a_2  +  -  -  -   + a_{100} = - 1

Let solve one more problem of same type!!

Question

\rm :\longmapsto\: If \: {(x - 1)}^{100} = a_0 + a_1x + a_2 {x}^{2} +a_3 {x}^{3}  -    + a_{100} {x}^{100}

find the value of

\rm :\longmapsto\:a_0 - a_1 + a_2  - a_3 +  -  -  -  + a_{100}

Solution :-

Given that

\rm :\longmapsto\: {(x - 1)}^{100} = a_0 + a_1x + a_2 {x}^{2} +a_3 {x}^{3}  +  -  -   + a_{100} {x}^{100}

To find the value,

Put x = - 1 in the given equation, we get

\rm :\longmapsto\: {( - 1 - 1)}^{100} = a_0 + a_1( - 1) + a_2 {( - 1)}^{2} +a_3 {( - 1)}^{3} + -  -   + a_{100} {( - 1)}^{100}

\rm :\longmapsto\: {( - 2)}^{100} = a_0 -  a_1+ a_2  - a_3 +   -  -  -   + a_{100}

\rm :\longmapsto\: a_0 -  a_1+ a_2  - a_3 +   -  -  -   + a_{100} =  {2}^{100}


pulakmath007: Excellent
Similar questions