Math, asked by yajat7524, 1 year ago

if x-1÷×=10,find (x+1÷×)^2​

Answers

Answered by Anonymous
14

\huge{\underline{\underline{\sf{Answer \ :}}}}

Given:

 \sf{x -  \frac{1}{x} = 10 }..........(1) \\

To find:

 \sf{(x +  \frac{1}{x}) {}^{2} } \\

Squaring equation (1) on both sides,

 \sf{x {}^{2} +  \frac{1}{x {}^{2}} - 2 = 100  } \\  \\  \rightarrow \:    \underline{\boxed{\sf{x {}^{2} +  \frac{1}{x {}^{2} }   = 102}}}

Now,

 \sf{(x +  \frac{1}{x}) {}^{2}  = x {}^{2}   +  \frac{1}{x {}^{2} } + 2  } \\  \\   \implies \: \sf{(x   +  \frac{1}{x}) {}^{2}  = 102 + 2 } \\  \\  \implies \:  \boxed{ \sf{(x +  \frac{1}{x}) {}^{2}  = 104  }}

Answered by kapil913
7

Given;

(x - \dfrac{1}{x}) = 10

To find ;

(x + \dfrac{1}{x}

Solution ::

(x - \dfrac{1}{x}) is in the form of (a-b) where x is a and \dfrac{1}{x} is b.

→ But we have to find (a+b)²

→ To find the (a + b)² we have to find its (a-b)²

→ (a-b) = a² + b² - 2ab

The (a-b)² form of (x - \dfrac{1}{x})² :-

= (x - \dfrac{1}{x}

= x² + \dfrac{1}{x}² - 2.x.\dfrac{1}{x} = (10)²

= x² + \dfrac{1}{x}² = 100 + 2

= x² + \dfrac{1}{x}² = 102 ................ (1)

(a+b)² = a² + b² = 2ab

Let us substitute the value of a² and b² as per equation 1.

(x + \dfrac{1}{x})² = x² + (\dfrac{1}{x})² + 2

= (x + \dfrac{1}{x})² = 102 + 2

=(x + \dfrac{1}{x})² = 104.

∴ Your answer is 104.

Similar questions