Math, asked by lokesh8512, 11 months ago

If x= 1/√2+1/2+1/2√2....., then the value of
x+1/x
(1) √2
(3) 3√2
(4) 4√2​

Attachments:

Answers

Answered by BhawnaAggarwalBT
1

Answer:

22

Step-by-step explanation:

x =  \frac{1}{ \sqrt{2} }  +  \frac{1}{2}  +  \frac{1}{2 \sqrt{2} }  +  \frac{1}{4} ......... \infty  \\  \\ taking \:  \:  \:  \frac{1}{ \sqrt{2} }  \:  \:  \: as \: common \\  \\ x =  \frac{1}{ \sqrt{2} } (1 +  \frac{1}{ \sqrt{2} }  +  \frac{1}{2}  +  \frac{1}{2 \sqrt{2} }  +   ......... \infty) \\  \\ putting \:  \frac{1}{ \sqrt{2} }  +  \frac{1}{2}  +  \frac{1}{2 \sqrt{2} }  +  ......... \infty \:  = x \\  \\ in \: eqation \\  \\ x =  \frac{1}{ \sqrt{2} } (1 + x) \\  \\  \sqrt{2} x = 1 + x \\  \\  \sqrt{2} x - x = 1 \\  \\ x( \sqrt{2}  - 1) = 1 \\  \\ x =  \frac{1}{( \sqrt{2}  - 1)}  \\  \\  \frac{1}{x}  =  \sqrt{2}  - 1  \:  \:  \:  \:  \:  - (1)\\  \\ from \: x \:  =  \: \frac{1}{( \sqrt{2}  - 1)} \\  \\ x = \frac{1}{( \sqrt{2}  - 1)} \\  \\ x = \frac{1}{( \sqrt{2}  - 1)} \times  \frac{( \sqrt{2} + 1 )}{( \sqrt{2} + 1) }  \\  \\ x =  \frac{ \sqrt{2}  + 1}{( { \sqrt{2}) }^{2}  -  {(1)}^{2} }  \\  \\ x =  \sqrt{2}  + 1 \:  \:  \:  \:  - (2)

Using equation (1) and (2)

x +  \frac{1}{x}  =  \sqrt{2}  + 1 +  \sqrt{2}  - 1 \\  \\ x +  \frac{1}{x}  = 2 \sqrt{2}

Hence the answer is 22

hope this will help you

(by the way i want to ask which class question is this ?)

Answered by HappiestWriter012
2

Answer : 2√2

Here, x is the sum of terms of an infinite G. P.

We see first term, a = 1/√2

Common ratio = 1/√2

Sum of infinite terms of G. P

 =  \frac{ a}{1 - r}

For this G. P,

x =  \frac{ \frac{1}{ \sqrt{2} } }{1 -  \frac{1}{ \sqrt{2} } }  \\  \\ x =  \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{2} }{ \sqrt{2}  - 1}  \\  \\ x =  \frac{1}{ \sqrt{2}  - 1}   -  - (1)\\  \\ x =  \frac{1}{ \sqrt{2}  - 1}  \times  \frac{ \sqrt{2}  + 1}{ \sqrt{2}  + 1}  \\  \\ x =  \frac{ \sqrt{2}  + 1}{2 - 1}  \\  \\ x =  \sqrt{2}  + 1

From (1)

x =  \frac{1}{ \sqrt{2}  - 1}  \\  \\  \frac{1}{x}  =  \sqrt{2}  - 1

Now,

 = x +  \frac{1}{x}   \\  \\ =  \sqrt{2}  + 1 +  \sqrt{2}  - 1 \\  \\  = 2 \sqrt{2}

Required Answer is 2√2

Similar questions