Math, asked by optitaurus5, 2 months ago

If x =1/(√2 +1) ; then (x + 1) equals to ?​

Answers

Answered by muskan0000017
15

\huge{\underline{\sf{\red{SOLUTION}}}}

x= 1/(√2+1)

x=1/(√2+1) × (√2-1)/(√2-1)

x=(√2-1)/(√2)²-(1)²

x=√2-1/2-1

x=√2-1

Now putting the value :

x+1 = √2-1+1 = √2

Hope it helps ya ! (:

Answered by pulakmath007
8

If x =1/(√2 +1) then (x + 1) equals to √2

Given :

\displaystyle \sf{x =  \frac{1}{ \sqrt{2} + 1 }   }

To find :

The value of x + 1

Solution :

Step 1 of 3 :

Write down the given expression

Here it is given that

\displaystyle \sf{x =  \frac{1}{ \sqrt{2} + 1 }   }

Step 2 of 3 :

Simplify the given expression

\displaystyle \sf{x =  \frac{1}{ \sqrt{2} + 1 }   }

\displaystyle \sf{ \implies \: x =  \frac{ \sqrt{2} - 1 }{ (\sqrt{2} + 1)( \sqrt{2}  - 1) }   }

\displaystyle \sf{ \implies \: x =  \frac{ \sqrt{2} - 1 }{ {( \sqrt{2} )}^{2}  -  {1}^{2}  }   }

\displaystyle \sf{ \implies \: x =  \frac{ \sqrt{2} - 1 }{ 2 - 1}   }

\displaystyle \sf{ \implies \: x =  \frac{ \sqrt{2} - 1 }{  1}   }

\displaystyle \sf{ \implies \: x =   \sqrt{2} - 1   }

Step 3 of 3 :

Find the value of x + 1

x + 1

= √2 - 1 + 1

= √2

Similar questions
Math, 2 months ago