If x=1+2√2, find x² - 1/x²
Answers
Answer:
Value of x^2+\frac{1}{x^2}x
2
+
x
2
1
is 6.
Step-by-step explanation:
Given: x=1+\sqrt{2}x=1+
2
To find: x^2+\frac{1}{x^2}x
2
+
x
2
1
x² = ( 1 + √2 )² = 1² + (√2)² + 2 × 1 × √2 = 1 + 2 + 2√2 = 3 + 2√2
\frac{1}{x^2}=\frac{1}{3+2\sqrt{2}}=\frac{1}{3+2\sqrt{2}}\times\frac{3-2\sqrt{2}}{3-2\sqrt{2}}
x
2
1
=
3+2
2
1
=
3+2
2
1
×
3−2
2
3−2
2
=\frac{3-2\sqrt{2}}{3^2-(2\sqrt{2})^2}=\frac{3-2\sqrt{2}}{9-8}=3-2\sqrt{2}=
3
2
−(2
2
)
2
3−2
2
=
9−8
3−2
2
=3−2
2
Now,
x^2+\frac{1}{x^2}=3+2\sqrt{2}+3-2\sqrt{2}=6x
2
+
x
2
1
=3+2
2
+3−
Step-by-step explanation:
Value of x^2+\frac{1}{x^2}x
2
+
x
2
1
is 6.
Step-by-step explanation:
Given: x=1+\sqrt{2}x=1+
2
To find: x^2+\frac{1}{x^2}x
2
+
x
2
1
x² = ( 1 + √2 )² = 1² + (√2)² + 2 × 1 × √2 = 1 + 2 + 2√2 = 3 + 2√2
=
x=3+2
x
3−2
2
3−2
2
=\frac{3-2\sqrt{2}}{3^2-(2\sqrt{2})^2}=\frac{3-2\sqrt{2}}{9-8}=3-2\sqrt{2}=
3
2
−(2
2
)
2
3−2
2
=
9−8
3−2
2
=3−2
2
Now,
2
+
x
2
1
=3+2
2
+3−2
2
=6
2
+
x
2
1
is 6