Math, asked by dahiyanishant2405, 1 year ago

If x=1/2-√3,find the value of (x+1/x)^3 -4

Answers

Answered by LovelyG
4

Answer:

60

Step-by-step explanation:

Given that ;

 \sf x =  \dfrac{1}{2 -  \sqrt{3} }

At first, rationalise the denominator of x, by multiplying numerator and denominator by (2 + √3).

 \sf x =  \frac{1}{2 -  \sqrt{3} }  \\  \\  \sf x =  \frac{1}{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3}} \\  \\  \sf x =   \frac{2 +  \sqrt{3} }{(2)^{2} - ( \sqrt{3}) {}^{2} }   \\  \\  \sf x =   \frac{2 +  \sqrt{3} }{4 - 3}  \\  \\  \sf x =  2 +  \sqrt{3}

Now, find the value of 1/x;

 \sf x =   \frac{1}{2 -  \sqrt{3} }  \\  \\ \sf  \implies  \frac{1}{x}  = 2  -  \sqrt{3}

Find the value of x + 1/x-

 \sf x  +  \frac{1}{x}  = 2  +  \sqrt{3}  + 2 -  \sqrt{3}  \\  \\  \sf x  +  \frac{1}{x}  = 2 + 2 \\  \\  \sf x  +  \frac{1}{x}  = 4

So,

 \sf (x  +  \frac{1}{x} )^{3}  - 4 \\  \\ \implies  \sf (4) {}^{3}  - 4 \\  \\ \implies  \sf 64 - 4 \\  \\ \implies  \sf 60

Hence, the answer is 60.

Similar questions