Math, asked by TanishaDasila, 1 year ago

If x=1/2-√3,find x^3-2x^2-7x+4.

Plz....Plz....Please answer it....Plz....

Attachments:

Answers

Answered by DaIncredible
2
Hey friend,
Here is the answer you were looking for:
x =  \frac{1}{2 -  \sqrt{3} }  \\

On rationalizing the denominator we get :

x =  \frac{1}{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }  \\

Using the identity :

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

x =   \frac{2 +  \sqrt{3}  }{ {(2)}^{2} -  {( \sqrt{3}) }^{2}  }   \\  \\ x =  \frac{2 +  \sqrt{3} }{4 - 3}  \\  \\ x = 2 +  \sqrt{3}

Putting the value of x we get,

 {x}^{3}  -  {2x}^{2}  - 7x + 4 \\  \\  =  {(2 +  \sqrt{3} )}^{3}  - 2 {(2 +  \sqrt{3}) }^{2}  - 7(2 +  \sqrt{3} ) + 4

Using the identities :

 {(x + y)}^{3}  =  {x}^{3}  +  {y}^{3}  + 3xy(x + y) \\  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy

 = ( {(2)}^{3}  +  {( \sqrt{3}) }^{3}  + 3(2)( \sqrt{3} )(2 +  \sqrt{3} )) - 2( {(2)}^{2}  +  {( \sqrt{3}) }^{2}  + 2(2)( \sqrt{3} )) - 7 \times 2 - 7 \times  \sqrt{3}  + 4 \\  \\  = (8 + 3 \sqrt{3}  + 6 \sqrt{3} (2 +  \sqrt{3} ))  - 2(4 + 3 + 4 \sqrt{3} ) - 14 - 7 \sqrt{3}  + 4 \\  \\  = 8 + 3 \sqrt{3}  + 12 \sqrt{3}  + 18 - 8 - 6 - 8 \sqrt{3}   -  14 - 7 \sqrt{3}  + 4 \\  \\  = 8 + 18 + 4 - 8 - 6 - 14 + 3 \sqrt{3}  + 12 \sqrt{3}  - 8 \sqrt{3}  - 7 \sqrt{3}  \\  \\  = 30 - 28 + 15 \sqrt{3}  - 15 \sqrt{3}   \\  \\  = 2

Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺

siddhartharao77: Nice answer sis
DaIncredible: thank you so much @tanisha ma'am and sid sir ^_^
siddhartharao77: Its ok mam
DaIncredible: sis*
DaIncredible: thanks sir ^_^
DaIncredible: thanks for brainliest ^_^
TanishaDasila: It is brainliest
TanishaDasila: Soooo
TanishaDasila: u Deserve it
Similar questions