Math, asked by vivek173, 1 year ago

if x=1÷(2-√3) then the value of x-1÷x

Answers

Answered by DaIncredible
1
Hey friend,
Here is the answer you were looking for:
x =  \frac{1}{2 -  \sqrt{3} }  \\  \\ on \: rationalizing \: we \: get \\  \\ x =  \frac{1}{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }  \\  \\ using \: the \: identity \\ (a + b)(a - b) =  { a }^{2}  -  {b}^{2}  \\  \\  =  \frac{2 +  \sqrt{3} }{ {(2)}^{2}  -  { (\sqrt{3} )}^{2} }  \\  \\  =  \frac{2 +  \sqrt{3} }{4 - 3}  \\  \\ x = 2 +  \sqrt{3}  \\  \\  \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \\  \\ on \: rationalizing \: we \: get \\  \\  \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\  using \: same \: identity \\  \\  \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{ {(2)}^{2} -  {( \sqrt{3}) }^{2}  }  \\  \\  =  \frac{2 -  \sqrt{3} }{4 -  \sqrt{3} }  \\  \\  \frac{1}{x}  = 2 -  \sqrt{3}  \\  \\ x -  \frac{1}{x}  = (2 +  \sqrt{3} ) - (2 -  \sqrt{3} ) \\  \\  x -   \frac{1}{x} = 2 +  \sqrt{3}   - 2 +  \sqrt{3}  \\  \\ x -  \frac{1}{x}  =  \sqrt{3}  +  \sqrt{3}  \\  \\ x -   \frac{1}{x}  = 2 \sqrt{3}

Hope this helps!!!!

@Mahak24

Thanks...
Similar questions