If x = 1/2 {√(a/b)-√(b/a)}, then prove that, 2a√(1+x^2) / x+√(1+x^2) = a+b
Answers
Answer:
2a(√x² + 1)(x + √x² + 1) = a + b.
Step-by-step explanation:
Hi,
Given x = 1/2 {√(a/b)-√(b/a)},
let t = b/a ,
(since square root is defined on t, t cannot be negative),
then x = 1/2{1/√t - √t]
x = 1/2{1 - t}/√t
2x√t = 1 - t
Squaring on both sides, we get
4x²t = 1 + t² - 2t
⇒ t² -2t(1 + 2x²) + 1 = 0
⇒ t = (2(1 + 2x²) ± √4(1 + 2x²)² - 4)/2
But, t > 0
⇒ t = (1 + 2x²) + √(1 + 2x²)² - 1
⇒ t = (1 + 2x²) + √(1 + 4x² + 4x⁴ - 1
⇒ t = (1 + 2x²) + √4x² + 4x⁴
⇒ t = (1 + 2x²) + 2x√x² + 1
⇒ t + 1 = 1 + (1 + 2x²) + 2x√x² + 1
⇒ t + 1 = 2( 1 + x² + x√x² + 1)
But t = b/a, so the above expression becomes
b/a + 1 = 2( 1 + x² + x√x² + 1)
⇒ (a + b)/a = 2( 1 + x² + x√x² + 1)
⇒ a + b = 2a( 1 + x² + x√x² + 1)
Taking √x² + 1 as common, we get
a + b = 2a√x² + 1(x + √x² + 1).
Hence, 2a√x² + 1(x + √x² + 1) = a + b.
Hope, it helped !
2x=√(a/b)-√(b/a)
=(a-b)/√(ab)
x=(a-b)/2√(ab)
x^2=(a^2-2ab+b^2)/4ab
x^2+1=(a+b)^2/4ab
√(x^2+1)=(a+b)/2√(ab)
Now,
2a√(x^2+1)/x+√(x^2+1)
Put the value of x and √(x^2+1)
Therefore the solution is (a+b) Proved.