Math, asked by anilkumar180535, 10 months ago

If x = 1/2  and x = -3 are roots of the quadratic equation ax^2 + 7x + b = 0, find the values of a and b.

Answers

Answered by Anonymous
4

Answer:-

\sf{The \ values \ of \ a \ and \ b \ are}

\sf{\frac{14}{5} \ and \ \frac{-21}{5} \ respectively. }

Given:

  • \sf{Roots \ of \ the \ equation \ are \ \frac{1}{2} \ and \ -3}

  • \sf{The \ given \ quadratic \ equation \ is}
  • \sf{ax^{2}+7x+b=0}

To find:

  • The value of a and b.

Solution:

\sf{The \ given \ quadratic \ equation \ is}

\sf{ax^{2}+7x+b=0}

\sf{Here, \ a=a, \ b=7 \ and \ c=b}

\sf{\frac{-b}{a}=\frac{1}{2}+(-3)}

\sf{\therefore{\frac{-7}{a}=\frac{1-6}{2}}}

\sf{\therefore{\frac{-7}{a}=\frac{-5}{2}}}

\sf{\therefore{a=\frac{14}{5}}}

\sf{\frac{c}{a}=\frac{1}{2}\times(-3)}

\sf{\therefore{\frac{b}{a}=\frac{-3}{2}}}

\sf{\therefore{b=\frac{-3}{2}\times\frac{14}{5}}}

\sf{\therefore{b=\frac{-21}{5}}}

\sf\purple{\tt{\therefore{The \ values \ of \ a \ and \ b \ are}}}

\sf\purple{\tt{\frac{14}{5} \ and \ \frac{-21}{5} \ respectively. }}

Similar questions