Math, asked by mahinsabry2004, 11 months ago

If x= 1 - √2, find the value of
(1). x +1/x
(2). x2 + 1/x2

Answers

Answered by TrickYwriTer
8

Step-by-step explanation:

x = 1 -  \sqrt{2}  \\  \\ 1)x +  \frac{1}{x}  \\  \\ 1 -  \sqrt{2}  +  \frac{1}{1 -  \sqrt{2} }  \\  \\  \frac{ {(1 -  \sqrt{2} ) }^{2} + 1 }{1 -  \sqrt{2} }  \\  \\  \frac{1 + 2 - 2 \sqrt{2}  + 1}{1 -  \sqrt{2} }  \\  \\  \frac{4 - 2 \sqrt{2} }{1 -  \sqrt{2} }  \\  \\  \frac{-2\sqrt2(1 -  \sqrt{2}) }{1 -  \sqrt{2} }  \\ \\ - 2 \sqrt2 \\ \\ \\  \\ 2) {x}^{2}  +  \frac{1}{ {x}^{2} }  \\  \\  {(1 -  \sqrt{2} )}^{2}  +  \frac{1}{ {(1 -  \sqrt{2}) }^{2} }  \\  \\ 1 + 2 - 2 \sqrt{2}  +  \frac{1}{1 + 2 - 2 \sqrt{2} }  \\  \\  3 - 2 \sqrt{2}  +  \frac{1}{3 - 2 \sqrt{2} }  \\  \\  \frac{ {(3 - 2 \sqrt{2})   }^{2}  + 1}{3 - 2 \sqrt{2} }  \\  \\  \frac{9 + 8 - 12 \sqrt{2} + 1 }{3 - 2 \sqrt{2} }  \\  \\ \frac{18 - 12 \sqrt{2} }{3 - 2 \sqrt{2} }  \\  \\  \frac{6(3- 2 \sqrt{2}) }{3 - 2 \sqrt{2} }

= 6

Similar questions