Math, asked by karanthakurforce, 11 months ago

If x = 1 - √2 , find the value of{x-1/x}^3​

Answers

Answered by TrickYwriTer
8

Step-by-step explanation:

 \huge \mathcal \red{A}\huge \mathcal \green{n} \huge \mathcal \orange{s}\huge \mathcal \blue{w}\huge \mathcal{e}\huge \mathcal \green{r - }

Given -

x = 1 -  \sqrt{2}

To Find -

(x +  \frac{1}{x} ) {}^{3}

As we know,

(a + b) {}^{3}  =  {a}^{3}   -  {b}^{3}   -  3 {a}^{2} b  + 3b {}^{2} a

Now,

According to the question,

(x +  \frac{1}{x} ) {}^{3}  \\  \\  {(1 -  \sqrt{2})}^{3}   -   \frac{1}{(1 -  \sqrt{2}) {}^{3} }  + 3 \times  \frac{1}{ {(1 -  \sqrt{2})}^{2} }  \times (1 -  \sqrt{2}) - 3 \times  {(1 -  \sqrt{2})}^{2}  \times  \frac{1}{(1 -  \sqrt{2})}  \\  \\   7 - 5 \sqrt{2}   -   \frac{1}{7 - 5 \sqrt{2} }  +  \frac{3}{(1 -  \sqrt{2}) }  - 3(1 -  \sqrt{2} ) \\  \\  \frac{(7 - 5 \sqrt{2}) {}^{2}    -  1}{7 - 5 \sqrt{2} }  + 3( \frac{1}{(1 -  \sqrt{2} )}  - (1 -  \sqrt{2} )) \\  \\  \frac{49 + 50 - 70 \sqrt{2}  - 1}{7 - 5 \sqrt{2} }  + 3( \frac{1 - (1 -  \sqrt{2} ) {}^{2} }{1 -  \sqrt{2} } ) \\  \\  \frac{98 - 70 \sqrt{2} }{7 - 5 \sqrt{2} }  + 3( \frac{1 - (1 + 2 - 2 \sqrt{2}) }{1 -  \sqrt{2} } ) \\  \\  \frac{14(7 - 5 \sqrt{2} )}{(7 - 5 \sqrt{2}) }  + 3( \frac{ - 2 + 2 \sqrt{2} }{(1 -  \sqrt{2}) } ) \\  \\ 14 + 3(  \frac{ - 2(1 -  \sqrt{2}) }{(1 -  \sqrt{2}) } ) \\  \\ 14 + 3 \times  - 2 \\   \\ 14 - 6 \\  \\  = 8

Answered by tahseen619
2

8

Step-by-step explanation:

Given:

x = 1 - √2

To find:

(x - 1/x)³

Solution:

x = 1 -  \sqrt{2}  \\ \\   \frac{1}{x}  =  \frac{1}{1 -  \sqrt{2} }

Now, Rationalizing the denominator ,

 \frac{1}{x}  =  \frac{(1 +  \sqrt{2} )}{(1 -  \sqrt{2})(1 +  \sqrt{2}  )}  \\  \\  \frac{1}{x}  =  \frac{(1 +  \sqrt{2}) }{ {1}^{2} - ( \sqrt{2}  )^{2} }  \\  \\  \frac{1}{x}  =  \frac{1 +  \sqrt{2} }{1 - 2}  \\  \\  \frac{1}{x}  =  \frac{1 +  \sqrt{2} }{ - 1}   \\  \\  \frac{1}{x}  =  - 1 -  \sqrt{2}  \\  \\  - ( \frac{1}{x} ) = 1 +  \sqrt{2}

Now in question,

 {(x -  \frac{1}{x} )}^{3}  \\  \\  \\  \\ (1 -  \sqrt{2}  + 1 +  \sqrt{2} ) {}^{3}  \\  \\  {(2)}^{3}  \\  \\ 8

Hence the required value is 8 .

Similar questions