If x =1-√2, find the value of (x - 1/x)^3
Answers
ANSWER:
Given
- x = 1 - √2
TO FIND:
(x - 1/x)³
By simplifying the question
Using
(a - b)³ = a³ - b³ - 3ab(a - b)
Similarly
(x - 1/x)³ = x³ - (1/x)³ - 3(x)(1/x)[x - 1/x]
(x - 1/x)³ = x³ - 1/x³ - 3(x² - 1/x)
Given x = 1 - √2
Substituting we get
(x - 1/x)³ = (1 - √2)³ - 1/(1 - √2)³ - 3[(1 - √2)² - 1/1 - √2]
Using
(a - b)³ = a³ - b³ - 3ab(a - b)
(a - b)² = a² + b² - 2ab
(x - 1/x)³ = 1³ - (√2)³ - 3(1)(√2)[1 - √2] - 1/1³ - (√2)³ - 3(1)(√2)[1 - √2] - 3[1² + (√2)² - 2(1)(√2) - 1/1 - √2]
(x - 1/x)³ = 1 - 2√2 - 3√2 + 6 - 1/1 - 2√2 - 3√2 + 6 - 3[1 + 2 - 2√2 - 1/1 - √2]
(x - 1/x)³ = 7 - 5√2 - 1/7 - 5√2 - 3[2(1 - √2)/1 - √2]
(x - 1/x)³ = (7 - 5√2)² - 1/7 - 5√2 - 3(2)
Using , (a - b)² = a² + b² - 2ab
(x - 1/x)³ = 7² + (5√2)² - 2(7)(5√2) - 1/7 - 5√2 - 6
(x - 1/x)³ = 48 + 50 - 70√2/7 - 5√2 - 6
(x - 1/x)³ = 98 - 70√2/7 - 5√2 - 6
(x - 1/x)³ = 14(7 - 5√2)/7 - 5√2 - 6
(x - 1/x)³ = 14 - 6
(x - 1/x)³ = 8
Hence,
♦ (x - 1/x)³ = 8