Math, asked by lohi7144, 10 months ago

if x=1-√2,find the value of [x-1/x]³​

Answers

Answered by BrainlyConqueror0901
5

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{(x-\frac{1}{x})^{3}=8}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies x = 1 -  \sqrt{2}  \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies( x-  \frac{1}{x} )^{3}  =?

• According to given question :

 \bold{as \: we \: know \: that} \\  \tt:  \implies   {(x -  \frac{1}{x} )}^{3}  \\  \\ \tt:  \implies  {(1 -  \sqrt{2}   -   \frac{1}{1 -  \sqrt{2} })}^{3}  \\  \\ \tt:  \implies  {(1 -  \sqrt{2}  -   \frac{1}{1 -  \sqrt{2} }  \times  \frac{1  +  \sqrt{2} }{1 +  \sqrt{2} } ) }^{3}  \\  \\ \tt:  \implies  {(1 -  \sqrt{2}  -   \frac{1 +  \sqrt{2} }{ {1}^{2}  -  { (\sqrt{2})}^{2}  }  )}^{3}  \\  \\ \tt:  \implies  {(1 -  \sqrt{2}  -  \frac{1 -  \sqrt{2} }{1 - 2} )}^{3}  \\  \\ \tt:  \implies  ( { 1 -  \sqrt{2}  - \frac{1 -  \sqrt{2} }{ - 1} )}^{3}  \\  \\ \tt:  \implies ( {1 -  \sqrt{2} + 1 +  \sqrt{2}  )}^{3}  \\  \\ \tt:  \implies (1 + 1)^{3}  \\  \\ \tt:  \implies  {2}^{3}  \\  \\  \green{\tt:  \implies 8} \\  \\ \green{\tt \therefore   {(x -  \frac{1}{x} )}^{3} = 8}

Answered by ItzArchimedes
78

ANSWER:

x = 1 - √2

(x - 1/x)³

Substituting the value of x

 \to \tt{{\bigg[1 - \sqrt{2} -\frac{1 }{1 - \sqrt{2}}}\bigg]^3}\\ \\ \\ \to \tt{\bigg[{\frac{(1 - \sqrt{2})^2 - 1 }{1 - \sqrt{2}}} \bigg]^3}

Simplifying using

★ (a - b)² = a² - 2ab + b²

\to \tt{\bigg[\frac{1^2 - 2(1)(\sqrt{2}) + (\sqrt{2})^2 - 1}{1 - \sqrt{2}}\bigg]^3} \\

→[ 2 - 2√2/1 - √2]³

→ [2(1 - √2)/1 - √2]³

→ 2³

→ 8

Hence , (x - 1/x)³ = 8

Similar questions