Math, asked by srivastavaneetu899, 2 months ago

If x=1-√2,find the value of (x-1/x)^3​

Answers

Answered by Tan201
0

Answer:

56-8\sqrt{2}

Step-by-step explanation:

Given:-

x=1-\sqrt{2}

To find:-

(x-\frac{1}{x})^3

Solution:-

\frac{1}{x} =\frac{1}{1-\sqrt{2} }

On rationalizing \frac{1}{x},

\frac{1}{1-\sqrt{2} } × \frac{1+\sqrt{2}}{1+\sqrt{2} }

 \frac{1+\sqrt{2}}{(1-\sqrt{2})(1+\sqrt{2}) }

\frac{1+\sqrt{2}}{(1)^2-(\sqrt{2})^2 } ((a+b)(a-b)=a^2-b^2)

\frac{1+\sqrt{2}}{1-2 }

\frac{1+\sqrt{2}}{-1 }

-(1+\sqrt{2} )

\sqrt{2}-1

\frac{1}{x} = \sqrt{2}-1

(x-\frac{1}{x})^3=[1-\sqrt{2}-(\sqrt{2}-1)]^3

[1-\sqrt{2}-\sqrt{2}+1)]^3

[2-2\sqrt{2} ]^3

(2)^3+(2\sqrt{2} )^3-3 × 2 × 2 × 2\sqrt{2} +3 × 2 × 2\sqrt{2} × 2\sqrt{2}

[(a-b)^3=a^3+b^3-3a^2b+3ab^2]

8+16\sqrt{2}-24\sqrt{2}+48

56-8\sqrt{2}

(x-\frac{1}{x})^3=56-8\sqrt{2}

Similar questions