Math, asked by advocate3953, 10 months ago

If x=1-√2,find the value of (x-1/x)^4

Answers

Answered by tahseen619
4

16

Step-by-step explanation:

Given:

x = 1 - √2

To find:

\text{\tt{The value of}} \:  \:  {(x -  \dfrac{1}{x})}^{4}

Answer in 3 steps:

1. Find the value of 1/x.

2. Find the value of (x - 1/x)

3. Simplify and Answer,

Solution:

x = 1 -  \sqrt{2}  \\  \\  \frac{1}{x}  =  \frac{1}{1 -  \sqrt{2}}

[Rationalizing the Denominator]

 =  \frac{1}{(1 -  \sqrt{2})}  \times  \frac{(1 +  \sqrt{2}) }{( 1+ \sqrt{2} )}  \\  \\  =  \frac{1 +  \sqrt{2} }{ {(1)}^{2}  -  {(\sqrt{2})}^{2}  }  [\because {a}^{2}  -  {b}^{2}  = (a + b)(a - b)] \\  \\  =  \frac{1 +  \sqrt{2} }{1 - 2}  \\  \\   = \frac{1 +  \sqrt{2} }{ - 1}  \\  \\ \therefore \:  \:  \frac{1}{x}   =  (- 1 -  \sqrt{2})

Again,

x -  \frac{1}{x}  \\  \\  = 1 -  \sqrt{2}  - ( - 1 -  \sqrt{2}) \\  \\  = 1 -  \sqrt{2}  + 1  + \sqrt{2}\\  \\ = 2 \\  \\  \therefore \: (x -  \frac{1}{x} ) = 2 \\  \\ Or  \:  \:  \: (x -  \frac{1}{x} )  {}^{4} =  {(2)}^{4}  \\  \\ Or \: \:   \: (x -  \frac{1}{x} )  {}^{4} =  16

Therefore, Required answer is 16.

Answered by karannnn43
0

16

Step-by-step explanation:

Given:-

x = (1 -  \sqrt{2} ) \\  \frac{1}{x}  =  \frac{1}{1 -  \sqrt{2} }  = ( \frac{1}{1 -  \sqrt{2} }  \times  \frac{1 +  \sqrt{2} }{1 +  \sqrt{2} } ) =  \frac{1 +  \sqrt{2} }{ - 1}  =(  -1 -  \sqrt{2} )

Solution:-

 {(x -  \frac{1}{x} )}^{4}  \\  \\  =  {(1 -  \sqrt{2}  -( -  1 -  \sqrt{2} ))}^{4}  \\  \\  =  {(1 -  \sqrt{2} + 1 +  \sqrt{2} )}^{4}  \\  \\  =  {(2}^{4}  \\  \\  = 16

Similar questions