Math, asked by kumarmeet398, 3 days ago

if x=1-√2, find the value of x-1/x​

Answers

Answered by TYKE
11

_________________________________________________________

Question :

 \sf \small If \: x = 1 -  \sqrt{2}  \: then \: find \: the \: value \: of \: x -  \frac{1}{x}

To find :

 \sf \small The  \: value \:  of  \: x - \frac{1}{x}

Solution :

x → 1 – √2

So 1/x must be 1/1 - √2

So we need to rationalise 1/x

 \frac{1}{x}  \rarr \frac{1}{1 -  \sqrt{2} }

 \frac{1}{x}  =  \frac{1(1 +  \sqrt{2}) }{(1 -  \sqrt{2})(1 +  \sqrt{2})  }

 \frac{1}{x}  =  \frac{1 +  \sqrt{2} }{ {(1)}^{2}  -  {( \sqrt{2}) }^{2} }

 \frac{1}{x}  =  \frac{1 +  \sqrt{2} }{ 1 - 2}

 \frac{1}{x}  =  \frac{1 +  \sqrt{2} }{ - 1}

 \frac{1}{x}  =  - 1 +  \sqrt{2}

Now we need to solve x - 1/x

x -  \frac{1}{x}

 \rarr1 -  \sqrt{2}  - ( - 1 +  \sqrt{2} )

 \rarr1 -  \sqrt{2}   + 1 -  \sqrt{2}

 \rarr1 + 1

 \rarr2

 \sf \small So  \: the  \: value \:  of  \: x - \frac{1}{x}  \: is \: \boxed{2}

_________________________________________________________

Similar questions