Math, asked by zammu1703, 1 year ago

If x=1+√2, find the value of x^2 + 1/x^2

Answers

Answered by mimifarooqui13
5

Answer:

5.999

Step-by-step explanation:

x = 1+\sqrt{2} \\x= 2.414\\hence \\ 2.414^2 + \frac{1}{2.414^2} \\=5.828 + \frac{1}{5.828} \\= 5.999


mimifarooqui13: Still getting 6 :)
zammu1703: try again
zammu1703: x sq. +1/x sq
zammu1703: while sub (1+root2)sq+1/(1+root2)sq
zammu1703: 3+1/3
zammu1703: lcm it
zammu1703: 9/3+1/3
zammu1703: im sorry your ans is correct
mimifarooqui13: No problem :)
IAMPK2: I think ur way of solving is not probably right but ur ur Answer is correct that way also .....,................I like your shortcut method......☺️
Answered by IAMPK2
2

Heya!!!

SOLUTION ==>

x = 1 +  \sqrt{2}

Finding \: the \: value \: of \:  \:  \:  \frac{1}{x}

Putting the value of x

 \frac{1}{x}  =  \frac{1}{1 +  \sqrt{2} }

Rationalising

 \frac{1}{x}  =  \frac{1}{1 +  \sqrt{2} }  \times  \frac{1 -  \sqrt{2} }{1 -  \sqrt{2} }  \\  \\  \frac{1}{x}  =  \frac{1 -  \sqrt{2} }{ {1}^{2} -  ({ \sqrt{2} })^{2}  } \\  \\  \frac{1}{x}  =  \frac{1 -  \sqrt{2} }{1 - 2}  \\  \\  \frac{1}{x}  =  \frac{1 -  \sqrt{2} }{ - 1}  \\  \\

 \frac{1}{x}  =  - (1 -  \sqrt{2)}  \\  \\  \frac{1}{x}  =  - 1 +  \sqrt{2}

Now,

x +  \frac{1}{x}  = (1 +  \sqrt{2} ) + ( - 1 +  \sqrt{2)}  \\  \\ x +  \frac{1}{x}  = 1 +  \sqrt{2}  - 1 +  \sqrt{2}  \\  \\ x +  \frac{1}{x}  = 2 \sqrt{2}

On squaring both sides

 {(x +  \frac{1}{x} )}^{2}  =  {(2 \sqrt{2} )}^{2}  \\  \\  {x}^{2}  +  { \frac{1}{x} }^{2}  + 2 \times x \times  \frac{1}{x}  = 4 \times 2 \\  \\  {x}^{2}  +  { \frac{1}{x} }^{2}  + 2 = 8 \\  \\  {x}^{2}  +  { \frac{1}{x} }^{2}  = 8 - 2 \\  \\  {x}^{2}  +  { \frac{1}{x} }^{2}  = 6

Ans is 6

Hope it helps

Attachments:

IAMPK2: please mark me as brainliest
IAMPK2: Am I correct
Similar questions