Math, asked by SujanKajjari, 7 months ago

If x= 1+√2, find the value of x square+1/x square​

Answers

Answered by Bidikha
2

Given -

x = 1 +  \sqrt{2}

To find -

The \: value \: of \:  \:  {x}^{2}  +  \frac{1}{ {x}^{2} }

Solution -

x = 1 +  \sqrt{2}

 \frac{1}{x}  =  \frac{1}{1 +  \sqrt{2} }

By rationalising the denominator we will get -

 \frac{1}{x}  =  \frac{1 -  \sqrt{2} }{(1 +  \sqrt{2})(1 -  \sqrt{2} ) }

 \frac{1}{x }  =  \frac{1 -  \sqrt{2} }{ {(1)}^{2}  -  {( \sqrt{2}) }^{2} }

 \frac{1}{x}  =  \frac{1 -  \sqrt{2} }{1 - 2}

 \frac{1}{x}  =  \frac{1 -  \sqrt{2} }{ - 1}

 \frac{1}{x}  =   - 1 +  \sqrt{2}

 \frac{1}{x}  =  \sqrt{2}  - 1

Now,

 =  {x}^{2}  +  \frac{1}{ {x}^{2} }

 =  {(1 +  \sqrt{2} )}^{2}  +  {( \sqrt{2}  - 1)}^{2}

 = (1 + 2 + 2 \sqrt{2})  +( 2  + 1 - 2 \sqrt{2} )

 = 3 + 2 \sqrt{2}  + 3 - 2 \sqrt{2}

 = 3 + 3

 = 6

Therefore the value of x²+1/x² is 6

Similar questions