Math, asked by hk839842, 5 hours ago

If x=-1/2 is a root of the quadratic equation 3x2 + 2kx+3= 0, find the
value of k. ​

Answers

Answered by Anonymous
61

Answer:

\underline{\purple{\ddot{\MasterRohith}}}

Given:-

  • If x=-1/2 is a root of the quadratic equation 3x^2+2kx+3=0

To find :-

  • The value of k .

Explanation :-

  • 3x^2+2kx+3
  • 3 (-1/2)^2+2k (-1/2)+3
  • 2/4-k+3=0
  • k=3/4 +3
  • k= 3+12/4
  • k=15/4.
  • k=3.75.

Therefore ,

  • The value of k is 3.75.

Hope it helps u mate .

Thank you .

Answered by BrainlyStar909
66

\underline{\large{ \sf  {GIVEN  : }}}

\bf \: x=-\frac{1}{2} is a solution of the quadratic equation  \sf 3x^2+2kx+3=0

\underline{ \large{\sf  {TO\: FIND   : }}}

\longrightarrow \sf \: Value  \: of  \: K =  \: ?

\underline{ \large{\sf   {SOLUTION   :} }}

To get the value of k substitute the value of x in the equation..

\longrightarrow \: \rm 3x^2+2kx+3=0\\

\rm \longrightarrow\: 3\bigg(-\dfrac{1}{2}\bigg)^2+2k\bigg(-\dfrac{1}{2}\bigg)+3=0\\

\rm \longrightarrow\: 3\bigg(\dfrac{1}{4}\bigg)-k+3=0\\

\rm \longrightarrow\: \dfrac{3}{4}-k+3=0\\

\rm \longrightarrow\: k=\dfrac{3}{4}+3\\

\rm \longrightarrow\: k=\dfrac{3+12}{4}\\

\rm \longrightarrow\: k=\dfrac{15}{4}\\

\rm \longrightarrow\: {k=3.75}\\

Therefore,

\rm \longrightarrow\:\underline{\boxed{\red{\rm Value\:of \: k = \dfrac{15}{4} \: or\: {3.75}} }}

Similar questions