Math, asked by xxxriaa, 11 months ago

if x=1/2-root 3,find the value of x2-4x+1=0​

Answers

Answered by rohitkumargupta
2

Answer:

x² - 4x + 1 = 16 + 8√3

Step-by-step explanation:

Given x = 1/2-3

x = 1/(2 - 3) × (2 + 3)/(2 + 3)

x = 2 + 3/2 - 3

x = -(2 + 3)

= 4 + 3 + 43

= 7 + 43

we have to find

- 4x + 1

=> 7 + 43 - 4(-2-3) + 1

=> 7 + 43 + 8 + 43 + 1

=> 15 + 83 + 1

=> 16 + 83

=> - 4x + 1 = 16 + 83

#SPJ3

Answered by pulakmath007
2

The value of - 4x + 1 = 0

Correct question :

\displaystyle \sf  If \: x =  \frac{1}{2 -  \sqrt{3} }  \: find \: the \: value \: of \:  {x}^{2}  - 4x + 1

Given :

\displaystyle \sf  x =  \frac{1}{2  -  \sqrt{3} }

To find :

The value of x² - 4x + 1

Solution :

Step 1 of 2 :

Rationalize the denominator of the value of x

\displaystyle \sf  x =  \frac{1}{2  -  \sqrt{3} }

\displaystyle \sf{ \implies }x =  \frac{2 +  \sqrt{3} }{(2 +  \sqrt{3})(2 -  \sqrt{3} ) }

\displaystyle \sf{ \implies }x =  \frac{2 +  \sqrt{3} }{ {(2)}^{2}   -  {( \sqrt{3} )}^{2} }

\displaystyle \sf{ \implies }x =  \frac{2 +  \sqrt{3} }{4 - 3}

\displaystyle \sf{ \implies }x =  \frac{2 +  \sqrt{3} }{1}

\displaystyle \sf{ \implies }x =  2 +  \sqrt{3}

Step 2 of 2 :

Find the value of x² - 4x + 1

\displaystyle \sf x = 2 +  \sqrt{3}

\displaystyle \sf{ \implies }x - 2 =  \sqrt{3}

Squaring both sides we get

\displaystyle \sf{  }{(x - 2)}^{2}  =  {(\sqrt{3})}^{2}

\displaystyle \sf{ \implies } {x}^{2} - 4x + 4 = 3

\displaystyle \sf{ \implies } {x}^{2} - 4x + 4  -  3  = 0

\displaystyle \sf{ \implies } {x}^{2} - 4x + 1 = 0

Hence the value of x² - 4x + 1 = 0

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=√3a+2b + √3a-2b / √3a+2b - √3a-2b

prove that bx²-3ax+b=0

https://brainly.in/question/19664646

2. the order of the surd 7√8

https://brainly.in/question/31962770

#SPJ3

Similar questions