Math, asked by kawal3276, 11 months ago

If x=1/2(t+1/t) y=1/2(t-1/t) then find dy/dx

Answers

Answered by rishu6845
13

Answer:

 \dfrac{dy}{dx}  \:  =  \dfrac{ {t}^{2}  + 1}{ {t}^{2} - 1 }

Step-by-step explanation:

Given--->

x \:  =  \dfrac{1}{2} (t \:  +  \dfrac{1}{t} )

and

y \:  =  \dfrac{1}{2} (t \:  -  \dfrac{1}{t} )

To find ---->

value \: of \:  \dfrac{dy}{dx}

Concept used ---->

1)

 \dfrac{dy}{dx}  =  \frac{ \dfrac{dy}{dt} }{ \dfrac{dx}{dt} }

2)

 \dfrac{d}{dx} ( \:  \dfrac{u}{v}  \: \: ) \:  =  \dfrac{v \:  \dfrac{du}{dx} \:  \:  -  \: u \:  \dfrac{dv}{dx}  }{ {v}^{2} }

3)

 \dfrac{d}{dx} ( \:  {x}^{n} ) =  \: n \:  {x}^{n - 1}

Solution---->

now

x \:  =  \frac{1}{2} ( \: t \:  +  \:  \dfrac{1}{t}  \: )

x \:  =  \dfrac{1}{2}  \: ( \:  \dfrac{ {t}^{2}  \:  +  \: 1}{t}  \: )

x \:  =  \:  \dfrac{ {t}^{2} \:  +  \: 1 }{2t}

differentiating \: with \: respect \: to \: x \: we \: get

 \dfrac{dx}{dt}  \:  =  \dfrac{2t \:  \dfrac{d}{dt} \: ( \:  {t}^{2}  \:  +  \: 1) \:  -  \: ( \:  {t}^{2} \:  +  \: 1 \: ) \:  \dfrac{d}{dt} \: ( \: 2t \: )   }{( \: 2t \: ) ^{2} }

 \dfrac{dx}{dt}  \:  =  \dfrac{2t \: ( \: 2t \:  +  \: 0 \: ) \:  -  \: ( {t}^{2} \:  + 1 \: ) \: ( \: 2 \: ) }{4 {t}^{2} }

 \dfrac{dx}{dt}  \:  =  \dfrac{4 {t}^{2}  \:  - 2 {t}^{2} \:  -  \: 2 }{4 {t}^{2} }

 \dfrac{dx}{dt} \:  =  \dfrac{2 {t}^{2} \:  -  \: 2 }{4 {t}^{2} }

 \dfrac{dx}{dt}  \:  =  \: \dfrac{ {t}^{2}  \:  -  \: 1}{2 {t}^{2} }

now

y \:  =  \dfrac{1}{2}  \: ( \: t \:   -  \dfrac{1}{t} )

y \:  =  \:  \dfrac{ {t}^{2} \:  -  \: 1 }{2 \: t}

differentiting \: with \: respect \: to \: t \: we \: get

 \dfrac{dy}{dt}  \:  =  \dfrac{2t \:  \dfrac{d}{dt}  \: ( {t}^{2}  \:  -  \: 1) \:  - ( {t}^{2} \:  - 1) \:  \dfrac{d}{dt} \: (2t)  }{ {(2t)}^{2} }

 \dfrac{dy}{dt}  \:  =  \dfrac{2t \: (2t \:  -  \: 0) \:  - ( {t}^{2} \:  - 1) \: (2) }{4 {t}^{2} }

 \dfrac{dy}{dt}  \:  =  \dfrac{4 {t}^{2} \:  - 2 {t}^{2} \:  + 2  }{4 {t}^{2} }

 \dfrac{dy}{dt} \:  = 2 \:  \dfrac{ ({t}^{2} \:  + 1) }{4 {t}^{2} }

 \dfrac{dy}{dt}  \:  =   \dfrac{ {t}^{2}  \:  + 1}{2 {t}^{2} }

now

 \dfrac{dy}{dx}  \:  =  \dfrac{ \dfrac{dy}{dt} }{ \dfrac{dx}{dt} }

 \dfrac{dy}{dx}  \:  =  \dfrac{ \dfrac{ {t}^{2} \:  +  \: 1 }{2 {t}^{2} } }{ \dfrac{ {t}^{2} \:  - 1 }{2 {t}^{2} } }

 \dfrac{dy}{dx}  \:  =  \dfrac{ {t}^{2} \:  +  \: 1 }{ {t}^{2} \:  - 1 }

Similar questions