if x = 1/ 2 , y = -2 / 3 , z = 1 / 4 . verify that x * ( y * z) = ( x * y) * z
Answers
Answered by
56
Step-by-step explanation:
Given, x=½, y= -⅔, z=¼
Now,
L.H.S=x*(y*z)
=½*(-⅔*¼)
= -1/12
R.H.S=(x*y)*z
=(½* -⅔)*¼
= -1/12
Hence,proved that L.H.S=R.H.S
Answered by
20
Given,
x = 1/ 2 , y = -2 / 3 , z = 1 / 4
To Prove,
x * ( y * z) = ( x * y) * z
Solution,
x = 1 / 2
y = -2 / 3
z = 1 / 4
Taking the LHS of the given equation,
LHS = x * ( y * z)
Putting values of x, y and z in this equation,
LHS = (1 / 2)*(- 2 / 3 * 1 / 4)
LHS = (1 / 2)*(- 2 / 12)
LHS = (- 2 /24)
Taking the RHS of the given equation,
RHS =( x * y) * z
Putting values of x, y and z in this equation,
RHS= (1 / 2*- 2 / 3) * (1 / 4)
RHS = (-2 / 6)*(1 / 4)
RHS = (- 2 /24)
LHS = (- 2 /24) = RHS
Hence, equation x * ( y * z) = ( x * y) * z is verified.
Similar questions