Math, asked by kavitasharma3955, 2 months ago

If x+1/ 27, ind the values of each of the following:
1.
x +  \frac{1}{x}
2.
x -  \frac{1}{x}



Answers

Answered by 12thpáìn
15

Given

  • x²+1/x²= 27

To Find

  • x+1/x
  • x-1/x

Solution

_____________________

x+1/x

{~~~~\implies \sf    \bigg ( x+\dfrac{1}{x}\bigg)^² = x² + \dfrac{1}{x²} + 2 × x × \dfrac{1}{x} }

{~~~~\implies \sf    \bigg ( x+\dfrac{1}{x}\bigg)^² = 27+ 2}

{~~~~\implies \sf  x+\dfrac{1}{x}=±\sqrt{29} }

_____________________

x-1/x

{~~~~\implies \sf    \bigg ( x-\dfrac{1}{x}\bigg)^² = x² + \dfrac{1}{x²} - 2 × x × \dfrac{1}{x} }

{~~~~\implies \sf    \bigg ( x+\dfrac{1}{x}\bigg)^² = 27-2}

{~~~~\implies \sf    \bigg ( x+\dfrac{1}{x}\bigg)^² = 25}

{~~~~\implies \sf   x+\dfrac{1}{x} = \sqrt{25}}

{~~~~\implies \sf   x+\dfrac{1}{x}= ±5}\\\\\\\\

More to know

  • \begin{gathered}\begin{gathered}\begin{gathered}\blue{\begin{gathered}\tiny\begin{gathered}\small{\small{\small{\small{\small{\small{\small{\small{\small{\small{\begin{gathered}\begin{gathered}\begin{gathered}\\\\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\red{ \bigstar} \: \underline{\bf{\orange{More \: Useful \: Formula}}}\\ {\boxed{\begin{array}{cc}\dashrightarrow \sf(a + b)^{2} = {a}^{2} + {b}^{2} + 2ab \\\\\dashrightarrow \sf(a - b)^{2} = {a}^{2} + {b}^{2} - 2ab \\\\\dashrightarrow \sf(a + b)(a - b) = {a}^{2} - {b}^{2} \\\\\dashrightarrow \sf(a + b) ^{3} = {a}^{3} + b^{3} + 3ab(a + b) \\\\ \dashrightarrow\sf(a - b) ^{3} = {a}^{3} - b^{3} - 3ab(a - b) \\ \\\dashrightarrow\sf a ^{3} + {b}^{3} = (a + b)(a ^{2} + {b}^{2} - ab) \\\\\dashrightarrow \sf a ^{3} - {b}^{3} = (a - b)(a ^{2} + {b}^{2} + ab \\\\\dashrightarrow \sf{a²+b²=(a+b)²-2ab}\\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}}}}}}}}}}}\end{gathered}\end{gathered}}\end{gathered}\end{gathered}\end{gathered}
Answered by MysticSohamS
0

Answer:

hey your answer is in above pics

so pls mark it as brainliest

Attachments:
Similar questions