If
x =1/3+2√2,then the value of
x-1/x is
Answers
Answer:
the answer to this question is given in the above attachment.
GIVEN :-
x = 1/(3 + 2√2) .
TO FIND :-
The value of x - 1/x.
SOLUTION :-
⇒ x = 1/(3 + 2√2)
By rationalizing the denominator we get,
⇒ x = {1 × (3 - 2√2)}/{(3 + 2√2)(3 - 2√2)}
By using identity :- (a + b)(a - b) = a² - b².
⇒ x = {(3 - 2√2)}/{(3)² - (2√2)²}
⇒ x = {(3 - 2√2)}/{9 - 4 × 2}
⇒ x = {(3 - 2√2)}/{9 - 8}
⇒ x = {(3 - 2√2)}/1
Hence we got the value of x = 3 - 2√2.
Now by using the above value of x we will find the value of x - 1/x.
⇒ x - 1/x.
Put the value of x = 3 - 2√2.
⇒ x - 1/x = (3 - 2√2) - 1/(3 - 2√2)
Taking LCM as 3 - 2√2 We get,
⇒ x - 1/x = {(3 - 2√2)(3 - 2√2) - 1}/{3 - 2√2}
⇒ x - 1/x = {(3 - 2√2)² - 1}/{3 - 2√2}
By using identity :- (a - b)² = a² + b² - 2ab.
⇒ x - 1/x = [{(3)² + (2√2) -2 × 3 × 2√2} - 1]/{3 - 2√2}
⇒ x - 1/x = (9 + 8 - 12√2 - 1)/(3 - 2√2)
⇒ x - 1/x = (16 - 12√2)/(3 - 2√2)
Again rationalizing the denominator we get,
⇒ x - 1/x = {(16 - 12√2)(3 - 2√2)}/{(3 - 2√2)(3 + 2√2)}
⇒ x - 1/x = {16(3 + 2√2) - 12√2(3 + 2√2)}/{(3)² - (2√2)²}
⇒ x - 1/x = (48 + 32√2 - 36√2 - 48)/(9 - 8)
⇒ x - 1/x = (32√2 - 36√2)/1
⇒ x - 1/x = -4√2.
Hence required value of x - 1/x = -4√2.