if X=1/3-√2 then find the value of X square +1/X squaare
Answers
EXPLANATION.
⇒ x = 1/(3 - √2).
As we know that,
We can write equation as,
⇒ 1/x = 1/1/(3 - √2).
⇒ 1/x = (3 - √2).
To find :
⇒ (x² + 1/x²).
First we rationalizes the value of x, we get.
⇒ x = 1/(3 - √2).
⇒ x = 1/(3 - √2) x (3 + √2)/(3 + √2).
⇒ x = (3 + √2)/[(3)² - (√2)²].
⇒ x = (3 + √2)/[9 - 2].
⇒ x = (3 + √2)/(7).
⇒ (x)² = [(3 + √2)/7]².
⇒ (x²) = [9 + 2 + 6√2/49].
⇒ (x)² = [11 + 6√2/49].
⇒ (1/x)² = (3 - √2)².
⇒ (1/x)² = 9 + 2 - 6√2.
⇒ (1/x)² = 11 - 6√2.
⇒ (x)² + (1/x)².
⇒ [11 + 6√2/49] + [11 - 6√2].
⇒ [11 + 6√2 + 49(11 - 6√2)/(49)].
⇒ [11 + 6√2 + 539 - 294√2]/(49).
⇒ [550 - 288√2]/(49).
Ans:- x = 1/(3-√2) × (3+√2)/(3+√2)
= (3+√2)/(9 - 2)
= (3+√2)/7
=> 1/x = 3-√2
now,
=> (x + 1/x)² = x²+1/x²+2×x×1/x
=> (3/7 + √2/7 + 3 - √2)² = x²+1/x²+2
=> ((3+√2+21-7√2)/7)² = x²+1/x²+2
=> (24/7-6√2/7)² = x²+1/x²+2
=> 441/7 + 72/49 - 288√2/7 = x²+1/x²+2
=> 441/7 + 72/49 - 288√2/7 - 2 = x²+1/x²
=> (441 + 72 - 288√2 - 98)/2 = x²+1/x²
=> (343+72-288√2)/2 = x² + 1/x²
=> 415/2 - 144√2 = x² + 1/x²
here is your answer
hope it will help you