Math, asked by yashasvi1tripathi, 2 months ago

if x 1/ √ 3- √ 2then find the value of (x²+1/x²)
please help me guys ​

Answers

Answered by shrirampawar249
1

Answer:

x =  \frac{1}{ \sqrt{3} -   \sqrt{2}  }  \\  x=  \frac{1}{ \sqrt{3}  -  \sqrt{2} }  \times   \frac{ \sqrt{3 } +  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  }  \\ x =  \frac{ \sqrt{3}  +  \sqrt{2} }{ { \sqrt{3} }^{2} -  { \sqrt{2} }^{2}  }  \\ x =  \frac{ \sqrt{3}  +  \sqrt{2} }{1}  \\  \frac{1}{x}  =  \frac{1}{ \frac{1}{ \sqrt{3} -  \sqrt{2}  } }  \\  \frac{1}{x}  =  \sqrt{3}  -  \sqrt{2}  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }   = {( \sqrt{3}  +  \sqrt{2}) }^{2}  +  {( \sqrt{3} -  \sqrt{2)}  }^{2}  \\  =  { \sqrt{3} }^{2}  +  { \sqrt{2} }^{2}  + 2 \sqrt{3}  \sqrt{2}  +  { \sqrt{3} }^{2}  +  { \sqrt{2} }^{2}  - 2 \sqrt{3}  \sqrt{2}  \\  = 3 + 2 + 2 \sqrt{6}  + 3 + 2 - 2 \sqrt{6}  \\ =  5 + 5 \\  = 10

Answered by sandy1816
1

x =  \frac{1}{ \sqrt{3} -  \sqrt{2}  }  \\  x =  \frac{ \sqrt{3} +  \sqrt{2}  }{3 - 2}  \\ x =  \sqrt{3}  +  \sqrt{2}  \\   \\  \frac{1}{x}  =  \sqrt{3}  -  \sqrt{2}  \\  \\ x +  \frac{1}{x}  =  \sqrt{3}  +  \sqrt{2}  +  \sqrt{3}  -  \sqrt{2}  \\ x +  \frac{1}{x}  = 2 \sqrt{3}  \\ ( {x +  \frac{1}{x} })^{2}  = 10 \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 10 \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 10

Similar questions