Math, asked by kartikeykashyapjayap, 9 months ago

If x+1/3=3 then find the value of x^2+1/x^3​

Answers

Answered by Abhishek474241
2

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

\tt{X+\dfrac{1}{X}}=3

{\sf{\green{\underline{\large{To\:find}}}}}

\tt{X^2+\dfrac{1}{X^2}}

{\sf{\pink{\underline{\Large{Explanation}}}}}

We know that

\boxed{\boxed{\sf\red{(a+b)^2=a^2+b^2+2ab}}}

Therefore

\tt{(X+\dfrac{1}{X})^2=X^2+\dfrac{1}{X^2}+2\frac{1}{X}\times{X}}

Solving

\tt{X+\dfrac{1}{X}}=3

Both side squaring

\tt{(X+\dfrac{1}{X})^2}=(3)²

\implies\tt{(X+\dfrac{1}{X})^2=X^2+\dfrac{1}{X^2}+2\frac{1}{X}\times{X}}=9

\implies\tt{9=X^2+\dfrac{1}{X^2}+2\frac{1}{X}\times{X}}

\implies\tt{9=X^2+\dfrac{1}{X^2}+2}

\implies\tt{9-2=X^2+\dfrac{1}{X^2}}

\implies\tt{7=X^2+\dfrac{1}{X^2}}

Additional Information

Now

\tt{X^3+\dfrac{1}{X^3}}

Formula used

\implies\tt{X^3+\dfrac{1}{X^3)}=(X+\dfrac{1}{x})(X^2+\dfrac{1}{X^2}-\frac{1}{X}\times{X)}}

¶utting value

\implies\tt{X^3+\dfrac{1}{X^3}={3}(7-1)}

\implies\tt{X^3+\dfrac{1}{X^3}={3}(6)}

\implies\tt{X^3+\dfrac{1}{X^3}=18}

Similar questions