Math, asked by GodofDeath2002, 1 year ago

if x+1/3=3 then x^4 + 1/x^4=?​

Answers

Answered by kulbir45
0

Step-by-step explanation:

x+1/3=3

3x+1=3

x=2/3

then, (2/3)^4+(2/3)^-4 =0

Answered by Anonymous
19

SOLUTION

We have,

x +  \frac{1}{x}  = 3

Squaring both sides, we get

( {x}^+  \frac{1}{x} ) {}^{2}  =  {3}^{2}   \\  \\  =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \times x \times  \frac{1}{x}  = 9 \\  \\  =  >  {x}^{2}  +  \frac{1}{x {}^{2} }  + 2 = 9 \\  \\  =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 9 - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 7

Now,

 {x}^{2}   +  \frac{1}{ { {x}^{2}} }  = 7 \\  \\  =  > ( {x}^{2}  +  \frac{1}{ {x}^{2} }) {}^{2}   =  {7}^{2}  \\  \\  =  >  ({x}^{2} ) {}^{2}  + ( \frac{1}{ {x}^{2} } ) {}^{2}  + 2 \times  {x}^{2}  \times  \frac{1}{ {x}^{2} }  = 49 \\  \\  =  >  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 = 49 \\  \\  =  >  {x}^{4}  +  \frac{1}{ {x}^{4} }   = 49 - 2 \\  \\  =  >  {x}^{4}  +  \frac{1}{ { {x}^{4}  }} = 47

hope it helps ☺️

Similar questions