Math, asked by ayush9308, 1 year ago

if x=1/3+√8 find the value of x cube - 2x square - 7x +5

Answers

Answered by saurabhsinghbihari
29
I hope this answer would be helpful for you
Attachments:
Answered by rahul123437
8

Answer:

Step 1: Give data

If x= \frac{1}{3} +\sqrt{8}

Step 2: To find

Find the value for x^{3}-2x^{2}  -7x+5.

Step 3: Finding solution

x= \frac{1}{3} +\sqrt{8}

x=\frac{1}{3+\sqrt{8} }\times\frac{3-\sqrt{8} }{3-\sqrt{8} }

x =\frac{3-\sqrt{8} }{9-8}  

x = 3 -\sqrt{8}

Substitute the value of x in the given equation to find the answer for the given question.

Now, x^{3}-2x^{2}  -7x+5 =  ({} 3-\sqrt{8} )^{3} -(3-\sqrt{8}) ^{2}-7(3-\sqrt{8} )+5    

we know that,

(a-b)^{3}=a^{3}  -b^{3} -3a^{2} b+3ab^{2}

(a-b)^{2} =a^{2} +b^{2} -2ab

Here a =3 and b =\sqrt{8}  in the above formula

Those two formula are used to express the above equation.

Now we get,

({} 3-\sqrt{8} )^{3}  = (3)^{3}  -(\sqrt{8}) ^{3} -3(3)^{2} (\sqrt{8} )+3(3)(\sqrt{8}) ^{2})

               = 27 - 8\sqrt{8} - 27\sqrt{8} + 9 (8)

                 27 - 8\sqrt{8} - 27\sqrt{8} + 72

(3-\sqrt{8}) ^{2} = 3^{2} +(\sqrt{8}) ^{2} -2(3)(\sqrt{8} )

               = 9 + 8 - 6\sqrt{8}

               =17 - 6\sqrt{8}

substitute  those expression value in the equation to find the value.

x^{3}-2x^{2}  -7x+5 =  ({} 3-\sqrt{8} )^{3} -(3-\sqrt{8}) ^{2}-7(3-\sqrt{8} )+5    

                            =   27 - 8\sqrt{8} - 27\sqrt{8} + 72 - 2( 17 - 6\sqrt{8} ) - 7 (3 -\sqrt{8} ) + 5

                           = 27 -8\sqrt{8}  -27\sqrt{8} + 72 - 34 + 12\sqrt{8}  -21 +7\sqrt{8} +5

                           = 104 - 55 + 19\sqrt{8}  -35\sqrt{8}

                           = 49 -16\sqrt{8}

Hence the value for the given equation is  49-16\sqrt{8}.

To learn more...

1) If x=1/2-sq root 3,find the value of x3-2x2-7x+5

https://brainly.in/question/100089

2) Prove that x³-2x²-7x+5=3 when x=1/(2-√3)

https://brainly.in/question/125173

             

       

Similar questions