Physics, asked by Anonymous, 3 months ago

If x = -1/3 is a zero of the polynomial p(x) = 27x³ - ax² - x + 3, then find the value of a.

❤ Dont spam ❤​

Answers

Answered by telex
238

Question :-

■ If x = -1/3 is a zero of the polynomial p(x) = 27x³ - ax² - x + 3, then find the value of a.

___________________

Solution :-

Given Information :-

  • ■ x =   \sf \frac{ - 1}{3}  is a zero of the polynomial.

  • ■ Polynomial ➱ p(x) = 27x³ - ax² - x + 3

To Find :-

  • ■ The value of a

Calculation :-

Substitute x =  \sf \frac{ - 1}{3} to find value of a

⇒ p(x) = 27x³-ax²-x+3

⇒ p(x) =(3x)³-ax²-x+3

⇒ p( \sf \frac{ - 1}{3} )

  \sf⇒p( \frac{ - 1}{3} ) = { \{3( \frac{ - 1}{3} ) \}}^{3}  - a {( \frac{ - 1}{3}) }^{2}  - (  \frac{ - 1}{3} ) + 3 = 0

⇒ (-1)³-a( \sf \frac{ - 1}{9} )+ \sf \frac{ - 1}{3} +3 = 0

⇒ -1  \sf \frac{ - a}{9} + \sf \frac{  1}{3} +3 = 0

 \sf \frac{ - a}{9} + \sf \frac{  1}{3} +2 = 0

 \sf \frac{ -a + 3 + 18}{2} = 0

⇒ -a+3+18 = 0

⇒ a = 3+18

a = 21

____________________

Final Answer :-

  • ■ The value of a is 21.

____________________

Note :-

Please scroll from right to left to see the whole solution.

Answered by Anonymous
0

Answer: a = 21.

Explanation:

Given:

p(x) = 27x³ - ax² - x + 3

And α = - ⅓.

We know, in a polynomial f(x) has a zero β, then f(β) = 0.

So,

p(α) = 27α³ - aα² - α + 3 = 0

=> 27(- 1/3)³ - a(- 1/3)² - (- 1/3) + 3 = 0

=> - 1 - a/9 + 1/3 + 3 = 0

=> - a/9 + 1/3 + 2 = 0

=> - a/9 = - (7/3)

=> a = 7/3 × 9 = 21.

. .

U

Similar questions