If x = -1/3 is a zero of the polynomial p(x) = 27x³ - ax² - x + 3, then find the value of a.
❤ Dont spam ❤
Answers
Answered by
238
Question :-
■ If x = -1/3 is a zero of the polynomial p(x) = 27x³ - ax² - x + 3, then find the value of a.
___________________
Solution :-
Given Information :-
- ■ x = is a zero of the polynomial.
- ■ Polynomial ➱ p(x) = 27x³ - ax² - x + 3
To Find :-
- ■ The value of a
Calculation :-
Substitute x = to find value of a
⇒ p(x) = 27x³-ax²-x+3
⇒ p(x) =(3x)³-ax²-x+3
⇒ p()
⇒ (-1)³-a()++3 = 0
⇒ -1 ++3 = 0
⇒ ++2 = 0
⇒
⇒ -a+3+18 = 0
⇒ a = 3+18
⇒ a = 21
____________________
Final Answer :-
- ■ The value of a is 21.
____________________
Note :-
Please scroll from right to left to see the whole solution.
Answered by
0
Answer: a = 21.
Explanation:
Given:
p(x) = 27x³ - ax² - x + 3
And α = - ⅓.
We know, in a polynomial f(x) has a zero β, then f(β) = 0.
So,
p(α) = 27α³ - aα² - α + 3 = 0
=> 27(- 1/3)³ - a(- 1/3)² - (- 1/3) + 3 = 0
=> - 1 - a/9 + 1/3 + 3 = 0
=> - a/9 + 1/3 + 2 = 0
=> - a/9 = - (7/3)
=> a = 7/3 × 9 = 21.
. .
U
Similar questions