Math, asked by wellwisher011, 1 month ago

If x = 1/3+root 7 then prove that 2x^2 – 6x + 1 = 0

Answers

Answered by mathdude500
7

\large\underline{\sf{Given- }}

 \red{\rm :\longmapsto\:\boxed{ \rm{ \: x =  \frac{1}{3 +  \sqrt{7} } \:  \: }}}

\large\underline{\sf{To\:prove - }}

 \red{\rm :\longmapsto\:\boxed{ \rm{ \:  \:  {2x}^{2} - 6x + 1 = 0 \:  \:  \: }}}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:x = \dfrac{1}{3 +  \sqrt{7} }

On rationalizing the denominator, we get

\rm :\longmapsto\:x = \dfrac{1}{3 +  \sqrt{7} } \times  \red{\dfrac{3 -  \sqrt{7} }{3 -  \sqrt{7} } }

We know,

 \purple{\boxed{ \rm{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2} \:  \: }}}

So, using this identity, we get

\rm :\longmapsto\:x = \dfrac{3 -  \sqrt{7} }{ {(3)}^{2}  -  {( \sqrt{7}) }^{2} }

\rm :\longmapsto\:x = \dfrac{3 -  \sqrt{7} }{9 - 7}

\rm :\longmapsto\:x = \dfrac{3 -  \sqrt{7} }{2}

\rm :\longmapsto\:2x = 3 -  \sqrt{7}

\rm :\longmapsto\:2x  - 3= -  \sqrt{7}

On squaring both sides, we get

\rm :\longmapsto\: {(2x - 3)}^{2} =  {( - \sqrt{7})}^{2}

\rm :\longmapsto\: {(2x)}^{2} +  {(3)}^{2}  - 2(2x)(3) = 7

\rm :\longmapsto\: {4x}^{2} + 9 - 12x = 7

\rm :\longmapsto\: {4x}^{2} + 9 - 12x  -  7 = 0

\rm :\longmapsto\: {4x}^{2}  - 12x  + 2 = 0

\rm :\longmapsto\:2( {2x}^{2}  - 6x  + 1) = 0

\bf\implies \: {2x}^{2} - 6x + 1 = 0

Hence, Proved

More Identities to know :-

 \red{\boxed{ \rm{ \:  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2} + 2xy}}}

 \blue{\boxed{ \rm{ \:  {(x  -  y)}^{2}  =  {x}^{2}  +  {y}^{2}  -  2xy}}}

 \green{\boxed{ \rm{ \:  {(x + y)}^{3}  =  {x}^{3}  +  {y}^{3} + 3xy(x + y) \:  \: }}}

 \orange{\boxed{ \bf{ \:  {(x  -  y)}^{3}  =  {x}^{3}   -   {y}^{3}  -  3xy(x  - y) \:  \: }}}

 \purple{\boxed{ \rm{ \:  {(x + y)}^{2} -  {(x - y)}^{2} = 4xy \:  \: }}}

 \pink{\boxed{ \rm{ \:  {(x + y)}^{2} +   {(x - y)}^{2} =2[ \:  {x}^{2}  +  {y}^{2} \: ]  \:  \: }}}

 \red{\boxed{ \rm{ \:  {x}^{2} -  {y}^{2}  = (x + y)(x - y)}}}

Answered by XxitsmrseenuxX
3

Answer:

\large\underline{\sf{Given- }}

 \red{\rm :\longmapsto\:\boxed{ \rm{ \: x =  \frac{1}{3 +  \sqrt{7} } \:  \: }}}

\large\underline{\sf{To\:prove - }}

 \red{\rm :\longmapsto\:\boxed{ \rm{ \:  \:  {2x}^{2} - 6x + 1 = 0 \:  \:  \: }}}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:x = \dfrac{1}{3 +  \sqrt{7} }

On rationalizing the denominator, we get

\rm :\longmapsto\:x = \dfrac{1}{3 +  \sqrt{7} } \times  \red{\dfrac{3 -  \sqrt{7} }{3 -  \sqrt{7} } }

We know,

 \purple{\boxed{ \rm{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2} \:  \: }}}

So, using this identity, we get

\rm :\longmapsto\:x = \dfrac{3 -  \sqrt{7} }{ {(3)}^{2}  -  {( \sqrt{7}) }^{2} }

\rm :\longmapsto\:x = \dfrac{3 -  \sqrt{7} }{9 - 7}

\rm :\longmapsto\:x = \dfrac{3 -  \sqrt{7} }{2}

\rm :\longmapsto\:2x = 3 -  \sqrt{7}

\rm :\longmapsto\:2x  - 3= -  \sqrt{7}

On squaring both sides, we get

\rm :\longmapsto\: {(2x - 3)}^{2} =  {( - \sqrt{7})}^{2}

\rm :\longmapsto\: {(2x)}^{2} +  {(3)}^{2}  - 2(2x)(3) = 7

\rm :\longmapsto\: {4x}^{2} + 9 - 12x = 7

\rm :\longmapsto\: {4x}^{2} + 9 - 12x  -  7 = 0

\rm :\longmapsto\: {4x}^{2}  - 12x  + 2 = 0

\rm :\longmapsto\:2( {2x}^{2}  - 6x  + 1) = 0

\bf\implies \: {2x}^{2} - 6x + 1 = 0

Hence, Proved

More Identities to know :-

 \red{\boxed{ \rm{ \:  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2} + 2xy}}}

 \blue{\boxed{ \rm{ \:  {(x  -  y)}^{2}  =  {x}^{2}  +  {y}^{2}  -  2xy}}}

 \green{\boxed{ \rm{ \:  {(x + y)}^{3}  =  {x}^{3}  +  {y}^{3} + 3xy(x + y) \:  \: }}}

 \orange{\boxed{ \bf{ \:  {(x  -  y)}^{3}  =  {x}^{3}   -   {y}^{3}  -  3xy(x  - y) \:  \: }}}

 \purple{\boxed{ \rm{ \:  {(x + y)}^{2} -  {(x - y)}^{2} = 4xy \:  \: }}}

 \pink{\boxed{ \rm{ \:  {(x + y)}^{2} +   {(x - y)}^{2} =2[ \:  {x}^{2}  +  {y}^{2} \: ]  \:  \: }}}

 \red{\boxed{ \rm{ \:  {x}^{2} -  {y}^{2}  = (x + y)(x - y)}}}

Similar questions