Math, asked by superstars5422, 1 month ago

If x=1/3-root5 then what is the value of Rootx-1/rootx

Answers

Answered by borate71
0

Step-by-step explanation:

Given:

 \bold {x =  \frac{1}{3 -  \sqrt{5} } }

To Find :

 \sqrt{x}  -  \frac{1}{ \sqrt{x} }

Solution:

Let's first rationalise the value of x,

x =  \frac{1}{3 -  \sqrt{5} }  \times  \frac{3 +  \sqrt{5} }{3 +  \sqrt{5} }

x =  \frac{3 +  \sqrt{5} }{4}

(Use following identity for denominator: (a+b)(a-b) = a²-b² )

Now,

Let's find √x.

 \sqrt{x}  =  \sqrt{ \frac{3 +  \sqrt{5} }{4} }

 =  \frac{ \sqrt{3 +  \sqrt{5} } }{ \sqrt{4} }

 =  \frac{ \sqrt{3 +  \sqrt{5} } }{2}

Now,

We have to find,

 \sqrt{x}  -  \frac{1}{ \sqrt{x} }

Substituting the value of √x,

 \frac{ \sqrt{3 +  \sqrt{5} } }{2}   -  \frac{1}{ \frac{ \sqrt{3 +  \sqrt{5} } }{2} }

 =  \frac{ \sqrt{3 +  \sqrt{5} } }{2}  -  \frac{2}{ \sqrt{3  +   \sqrt{5} } }

 =  \frac{( \sqrt{3 +  \sqrt{5} }) ^{2}  -  {2}^{2}  }{2 \sqrt{3 +  \sqrt{5} } }

 =  \frac{3 +  \sqrt{5} - 4 }{2 \sqrt{3 +  \sqrt{5} } }

 =  \frac{ \sqrt{5} - 1 }{2 \sqrt{3 +  \sqrt{5} } }

Again rationalising the denominator,

 =  \frac{ \sqrt{5}  - 1}{2 \sqrt{3 +  \sqrt{5} } }  \times  \frac{ \sqrt{3 +  \sqrt{5} } }{ \sqrt{3   +   \sqrt{5} } }

 =  \frac{( \sqrt{5} - 1)( \sqrt{3 +  \sqrt{5}) }  }{6 + 2 \sqrt{5} }

Again rationalising the denominator : )

 \frac{( \sqrt{5} - 1)( \sqrt{3 +  \sqrt{5} }  )(6 - 2 \sqrt{5)} }{16}

I hope I am correct !

Similar questions