Math, asked by shushith60032, 6 months ago

If x(1+3i)+y(2-i)-5+i=0 find x+y​

Answers

Answered by Asterinn
6

Given :

  • x(1+3i)+y(2-i)-5+i=0

To find :

  • x+y

Solution :

 \sf \implies x(1 + 3i) + y(2 - i) - 5 + i = 0

Where , i = √(-1)

 \sf \implies x(1 + 3i) + y(2 - i) - 5 + i = 0 + 0i

\sf \implies x + 3xi + 2y- iy - 5 + i = 0 + 0i

\sf \implies   i+ 3xi- iy + 2y - 5 +x = 0 + 0i

\sf \implies   (1+ 3x- y )i+ (2y - 5 +x) = 0 + 0i

\sf \implies    (2y - 5 +x)  + (1+ 3x- y )i= 0 + 0i

Now ,

 \longmapsto \sf 2y - 5 +x = 0

 \longmapsto \sf 2y +x = 5

\longmapsto \sf x = 5 - 2y......(1)

Also :-

\longmapsto \sf ( 1+ 3x- y) i = 0i

\longmapsto \sf 1+ 3x- y= 0

\longmapsto \sf 3x- y=  - 1......(2)

Now from (1) put x = 5-2y in (2).

\mapsto \sf 3(5 - 2y)- y=  - 1

\mapsto \sf 15 - 6y- y=  - 1

\mapsto \sf  - 7y=  - 1 - 15

\mapsto \sf y=   \dfrac{16}{7}

Now we will find the value of x :-

\mapsto \sf x = 5 - 2( \frac{16}{7} )

\mapsto \sf x = 5 - \dfrac{32}{7}

LCM =7

\mapsto \sf x = \dfrac{35 - 32}{7}

\mapsto \sf x = \dfrac{3}{7}

 \rightarrow\sf x + y=  \dfrac{3}{7}  +  \dfrac{16}{7}

\rightarrow\sf x + y=  \dfrac{3 + 16}{7}   =  \dfrac{19}{7}

Answer : 19/7

Similar questions