Math, asked by arshavanand, 1 year ago

If x=1/4-√15 , y=1/4+√15 then x cube + y cube =

Answers

Answered by anonymous64
34
Given,
x =  \frac{1}{4 -  \sqrt{15} }
and,
y =  \frac{1}{4 +  \sqrt{15} }
We have to find,
 {x}^{3}  +  {y}^{3}

Finding :

x =  \frac{1}{4 -  \sqrt{15} }
Rationalising the denominator,

 =  > x =  \frac{1}{4 -  \sqrt{15} }  \times  \frac{4 +  \sqrt{15} }{4 +  \sqrt{15} }
 =  > x =  \frac{1 \times 4 +  \sqrt{15} }{ ({4})^{2} -  {( \sqrt{15}) }^{2}  }
 =  > x =  \frac{4 +  \sqrt{15} }{16 - 15}
 =  > x =  \frac{4  +  \sqrt{15} }{1}
 =  > x = 4 +  \sqrt{15}  \:  \:  \:
Therefore, x = 4 + √15 (I)


Again,

y =  \frac{1}{4 +  \sqrt{15} }
Rationalising the denominator,

 =  > y =  \frac{1}{4 +  \sqrt{15} } \times  \frac{4 -  \sqrt{15} }{4 -  \sqrt{15} }
 =  > y =  \frac{1 \times 4 -  \sqrt{15} }{ ({4})^{2} -  { (\sqrt{15} )}^{2}  }
 =  > y =  \frac{4 -  \sqrt{15} }{16 - 15}
 =  > y =  \frac{4 -  \sqrt{15} }{1}
 =  > y = 4 -  \sqrt{15}
Therefore, y = 4 - √15. (II)

Now,
x + y
= (4 + √15) + (4 - √15)
= 4 + √15 + 4 - √15
= 4 + 4 + 0
= 8

Further,
xy
= (4 + √15) (4 - √15)
= 16 + 4√15 - 4√15 - 15
= 16 - 15
= 1


Now, we know that,

 {x}^{3}   +  {y}^{3}  = (x + y)( {x}^{2}   + {y}^{2}   -  xy)
 = (8)({4 +  \sqrt{15}})^{2}+ {(4 -  \sqrt{15} })^{2}  - 1
 = (8)(16 + 15) + (16 - 15) - (1)
 = (8)(31) + (1) - (1)
 = 8 \times 31
 = 248

That's your answer.

Hope it'll help.. :-D

anonymous64: If it was helpful to you, please mark as Brainliest.
Answered by pkparmeetkaur
6
Given,

and,

We have to find,

Finding :

Rationalising the denominator,

Therefore, x = 4 + √15 (I)

Again,

Rationalising the denominator,

Therefore, y = 4 - √15. (II)

Now,
x + y
= (4 + √15) + (4 - √15)
= 4 + √15 + 4 - √15
= 4 + 4 + 0
= 8

Further,
xy
= (4 + √15) (4 - √15)
= 16 + 4√15 - 4√15 - 15
= 16 - 15
= 1

Now, we know that,

248....

That's your answer.
Similar questions