if x = 1 / 4 - square rot of 15 and y = 1/4+square root of 15 what is the value of x cube + y cube
Answers
Answered by
3
x³ + y³ = 488
Step-by-step explanation:
Given,
x = 1/(4 - √15)
= (4 + √15)/{(4 - √15)(4 + √15)}
= (4 + √15)/(16 - 15)
= 4 + √15
y = 1/(4 + √15)
= (4 - √15)/{(4 + √15)(4 - √15)}
= (4 - √15)/(16 - 15)
= 4 - √15
Then x³ + y³
= (4 + √15)³ + (4 - √15)³
= (4 + √15 + 4 - √15) {(4 + √15)² - (4 + √15) (4 - √15) + (4 - √15)²}
= 8 {(16 + 8√15 + 15) - (16 - 15) + (16 - 8√15 + 15)}
= 8 (31 + 8√15 - 1 + 31 - 8√15)
= 8 * 61
= 488
Rule:
• a³ + b³ = (a + b) (a² - ab + b²)
• a³ - b³ = (a - b) (a² + ab + b²)
Similar questions