Math, asked by barbie8086, 11 months ago

If x=1/5-x and x is not equal to 5 , find x^3+1/x^3

Answers

Answered by hukam0685
1

\bf \red{ {x}^{3} + \frac{1}{ {x}^{3} } = 110} \\

Given:

  • if x = \frac{1}{5 - x}\\ ; x \neq5 \\

To find:

  • Find the value of  {x}^{3} + \frac{1}{ {x}^{3} } \\.

Solution:

Formula/Concept to be used:

  1.  {x}^{3} + \frac{1}{ {x}^{3} } = \left( {x + \frac{1}{x} } \right)^{3} - 3 \left(x + \frac{1}{x} \right ) \\\\
  2. ( {a + b)}^{3} = {a}^{3} + {b}^{3} + 3ab(a + b) \\

Step 1:

Find the value of x + \frac{1}{x}

As,

x = \frac{1}{5-x} \\

cross multiply

5-x = \frac{1}{x} \\

or

 \bf \red{x + \frac{1}{x} = 5} \\

Step 2:

Find the value of  {x}^{3} + \frac{1}{ {x}^{3} } \\

According to the formula;

{x}^{3} + \frac{1}{ {x}^{3} } = \left( {x + \frac{1}{x} } \right)^{3} - 3 \left(x + \frac{1}{x} \right ) \\

put value of x+1/x.

{x}^{3} + \frac{1}{ {x}^{3} } = {5}^{3} - 3 \times 5 \\

or

{x}^{3} + \frac{1}{ {x}^{3} } = 125 - 15 \\

or

{x}^{3} + \frac{1}{ {x}^{3} } = 110 \\

Thus,

 \bf \: {x}^{3} + \frac{1}{ {x}^{3} } = 110 \\

Learn more:

1) if x-1/x=8 find x3-1/x3 https://brainly.in/question/10705814

2) If x2+1/x2=83 find the value of x3-1/x3 https://brainly.in/question/1403212

#SPJ3

Answered by krishna210398
1

Answer:

Concept - Basic exponent

Given - x=\frac{1}{5-x} and x is not equal to 5

Find - x^{3} + \frac{1}{x^{3} }

Step-by-step explanation:

In the question it is given that x = \frac{1}{x-5}

x = \frac{1}{x-5} \\(x+\frac{1}{x}  = 5) ... 1

Now, x^{3} + \frac{1}{x^{3} }

= > x^{3} + \frac{1}{x^{3} }=(x+\frac{1}{x})^{3}  -3 (x+\frac{1}{x})\\= > x^{3} + \frac{1}{x^{3} } = (5)^{3}  - 3  *  5\\= > x^{3} + \frac{1}{x^{3} }  =110

Answer is 110

#SPJ2

Similar questions