Math, asked by muralimohan36, 10 months ago

if X +1/7=7 and xy=84 find the value of x^3+1​

Attachments:

Answers

Answered by raushan6198
0

Answer:

x  + \frac{1}{x}  = 7 \\ xy = 84 \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  \\  = (x +  \frac{1}{x} )( {x}^{2}  - x \times  \frac{1}{x}  +  \frac{1}{ {x}^{2} } ) \\  = (x +  \frac{1}{x} )( {x}^{2}  +  \frac{1}{ {x}^{2} }  - 1) \\  = (x +  \frac{1}{x} )( {x +  \frac{1}{x} )}^{2}  - 1 - 1 \\  = 7( {7 }^{2}  - 2) \\  = 7 \times (49 - 2) \\  = 7 \times 47 \\  = 329

Answered by tahseen619
5

322

Step-by-step explanation:

{\underline{{\text{Given}}}}

x +  \dfrac{1}{x}  = 7 \\  \\ xy = 84 \:  \:  \text{[We don't need it]}

{\underline{{\text{To Find:}}}}

 {x}^{3}   +  \dfrac{1}{ {x}^{3} }

{\underline{{\text{Solution:}}}}

x +  \frac{1}{x}  = 7......(1) \: \:  [\text{Cubing both side} ] \\  \\  {(x +  \frac{1}{x} )}^{3}  =  {7}^{3}  \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3.x. \frac{1}{x} (x +  \frac{1}{x} ) = 343 \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 .\cancel{x} . \frac{1}{\cancel{x}} (7) = 343 \: \: [\text{From (1)} ] \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3.7 = 343 \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 21 = 343 \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} } = 343 - 21 \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} } = 322

Hence, the required answer is 322.

{{\boxed{ \text{\blue{Some Important Formula}}}}}

 {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \\  \\  {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy \\  \\  {(x + y)}^{2}  = (x - y) {}^{2}   + 4xy \\  \\  {(x  -  y)}^{2}  = (x  +  y) {}^{2}    -  4xy  \\  \\ (x + y) {}^{2}  + (x - y) {}^{2}  = 2( {x}^{2}  +  {y}^{2} ) \\  \\ (x  + y) {}^{2}  - (x  - y) {}^{2}  = 4xy \\  \\  {(x + y)}^{3}  =  {x}^{3}  +  {y}^{3}  + 3xy(x + y) \\  \\ (x - y) {}^{3}  =  {x}^{3}  - {y}^{3}  - 3xy(x - y)

Similar questions