Math, asked by Lokita6133, 5 hours ago

if x=(1+a)/(1-a) and y=(1-a)/(1+a) then find x^2 +y^2 +xy

Answers

Answered by darshanradha3
0

Answer:

Step-by-step explanation:

Given :

             x=\frac{1+a}{1-a}

            x^{2}=\frac{(1+a)^{2} }{(1-a)^{2} }--------------> Equation 1          (Squaring both sides)

            y=\frac{1-a}{1+a}

           y^2=\frac{(1-a)^2}{(1+a)^2}---------------> Equation 2        (Squaring both sides)

          xy=\frac{(1+a)}{(1-a)} * \frac{(1-a)}{(1+a)}

         xy = 1 ----------------> Equation 2                  (After cancelling terms)

Given equation is;

          x² + y² + xy ---------------> Equation 4

        Substituting Equation 1 , 2 and 3 in Equation 4 we get ;

       =\frac{(1+a)^{2} }{(1-a)^{2} }+\frac{(1-a)^2}{(1+a)^2}+1

                                               HOPE U UNDERSTOOD

                                                         TAHNK YOU :)  

Answered by thathappygirl
0

Answer:

0

Step-by-step explanation:

(1+a/1-a)^2+(1-a/1+a)+(1+a/1-a×1-a/1+a)

1a^2/a^2+a^2/1a^2

Similar questions