Math, asked by TrexNucleya, 4 months ago

If x^1/a = y^1/b = z^1/c and xyz= 1 ,then prove that a+b+c=0 ( step by step)​

Answers

Answered by Anonymous
8

{\huge{\star}}\:\:\: {\bf{\LARGE{\underline{\bold{Given :}}}}}

\rightsquigarrow \sf x^\frac{1}{a}=y^\frac{1}{b}=z^\frac{1}{c}

\rightsquigarrow \sf xyz=1

{\huge{\star}}\:\:\: {\bf{\LARGE{\underline{\bold{Proof :}}}}}

\circ\:\:\:\: \sf x^\frac{1}{a}=y^\frac{1}{b}=z^\frac{1}{c}=k\:\:\:\bf[let]

\begin{array}{ccc}\sf x^\frac{1}{a}=k&\sf y^\frac{1}{b}=k\:&\sf z^\frac{1}{c}=k\:\\ \sf\mapsto\log_xk=\frac{1}{a}&\mapsto \sf \log_yk=\frac{1}{b}&\sf\mapsto\log_zk=\frac{1}{c} \:\\ \mapsto \sf \log_kx=a&\mapsto\sf\log_ky=b&\mapsto\sf\log_kz=c&\underline{\:\:\:\:\:}(1)&\underline{\:\:\:\:\:}(2)&\underline{\:\:\:\:\:\:}(3) \end{array}

now,

adding eqn (1) eqn (2) and eqn (3)

\dashrightarrow \sf a+b+c = \log_kx+\log_ky+\log_kz

\dashrightarrow \sf (a+b+c)=\log_k(xyz)

\dashrightarrow \sf (a+b+c)=\log_k(1)

\dashrightarrow \underline{\boxed{\sf (a+b+c)=0}}

__________

@StayHigh

Similar questions