Math, asked by vasudevvs2003, 3 months ago

if x-1 and X+1 are factor of ax^3+x^2-2x+b then find the value of a and b




very urgent will be marked as brainliest ans​

Answers

Answered by mathdude500
1

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \ \: :  ⟼ Let  \: f(x) \:  =  \: a {x}^{3}  +  {x}^{2}  - 2x + b

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 1 }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \ \: :  ⟼ Now, \: (x - 1) \: is \: a \: factor \: of \: f(x)

\tt\implies \:f(1) = 0

\tt\implies \: {a(1)}^{3 }   +  {(1)}^{2} - 2 \times 1 + b = 0

\tt\implies \:a + 1 - 2 + b = 0

\tt\implies \:b = 1 - a -  -  - (1)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 2 }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \ \: :  ⟼ Now, \: again \: (x + 1) \: is \: a \: factor \: of \: f(x)

\tt\implies \:f( - 1) = 0

\tt\implies \:a {( - 1)}^{3}  +  {( - 1)}^{2}  - 2( - 1) + b = 0

\tt\implies \: - a + 1 + 2 + b = 0

\tt\implies \:b - a + 3 = 0

\tt\implies \:1 - a - a + 3 = 0 \:  \:   \:  \:  \:  \:  \:  \:  \: using \: (1)

\tt \ \: :  ⟼ 4 - 2a = 0

\tt\implies \:4 = 2a

\tt\implies \:a \:  = 2

\tt\implies \:b \:  =  \: 1 - a = 1 - 2 =  - 1

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf So \:  -  \:  \begin{cases} &\sf{a \:  = 2} \\ &\sf{b \:  =  - 1} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions