If (x+1) and (x-1) are factors of ax3+ x2
-2x+b , find the value of a and b.
Answers
Step-by-step explanation:
Given that x
2
+px+1 is a factor of ax
3
+bx+c.
Let ax
3
+bx+c=(x
2
+px+1)(ax+λ), where λ is a constant.
Then equating the coefficients of line powers of x on both sides, we get
0=ap+λ,b=pλ+a,c=λ
⇒p=−
a
λ
=−
a
c
Hence,
b=(−
a
c
)c+a
⇒ab=a
2
−c
2
How satisfied are you with the answer?
This will help us to improve better
answr
Get Instant Solutions, 24x7
No Signup required
girl
Prev Ques
S O L U T I O N :
We have cubic polynomial p(x) = ax³ + x² - 2x + b & zero of the polynomial p(x) = 0
Given, two factor are (x+1) & (x-1)
- p(x) = 0
→ x + 1 = 0
→ x = -1
&
→ x - 1 = 0
→ x = 1
Now, putting the value of x = -1 in the given polynomial, we get;
⇒ p(x) = ax³ + x² - 2x + b = 0
⇒ p(-1) = a(-1)³ + (-1)² - 2(-1) + b = 0
⇒ a × (-1) + 1 + 2 + b = 0
⇒ -a + 3 + b = 0
⇒ -a + b = -3.................(1)
Putting the value of x = 1 in the given polynomial, we get;
⇒ p(x) = ax³ + x² - 2x + b = 0
⇒ p(1) = a(1)³ + (1)² - 2(1) + b = 0
⇒ a × (1) + 1 - 2 + b = 0
⇒ a - 1 + b = 0
⇒ a + b = 1..............................(2)
From equation (2),we get;
⇒ a + b = 1
⇒ a = 1 - b..................(3)
∴Putting the value of a in equation (1),we get;
⇒ -(1-b) + b = -3
⇒ -1 + b + b = -3
⇒ -1 + 2b = -3
⇒ 2b = -3 + 1
⇒ 2b = -2
⇒ b = -2/2
⇒ b = -1
∴Putting the value of b in equation (3),we get;
⇒ a = 1 - ( -1)
⇒ a = 1 + 1
⇒ a = 2
Thus,
The value of a & b will be 2 & -1 .