If x + 1 and x - 1 are factors of ax3 + x2 - 2x + b, then the values of a and b are respectively
(1) 2 - 1
(2) - 1, 2
(3) 1,2
(4) -1, -2
Answers
Given :
- Polynomial = ax³ + x² - 2x + b
- The factors of the polynomial = (x + 1) and (x - 1)
To find :
- The value of a and b
Solution :
⇒ P(x) = ax³ + x² - 2x + b
The factor of the given polynomial = (x + 1)
→ (x + 1) = 0
→ x = - 1
⇒ P(-1) = a(-1)³ + (-1)² - 2(-1) + b = 0
⇒ a(-1) + (1) + 2 + b = 0
⇒ - a + 1 + 2 + b = 0
⇒ - a + b + 3 = 0
⇒ - a + b = - 3 -------(1)
⇒ P(x) = ax³ + x² - 2x + b
The factor of the given polynomial = (x - 1)
→ (x - 1) = 0
→ x = 1
⇒ P(1) = a(1)³ + (1)² - 2(1) + b = 0
⇒ a(1) + (1) - 2 + b = 0
⇒ a + 1 - 2 + b = 0
⇒ a + b - 1 = 0
⇒ a + b = 1 -------(2)
Solving (1) and (2) :-
⠀⠀⠀⠀⠀⠀⠀⠀⠀ - a + b = - 3
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀a + b = 1
⠀⠀⠀⠀⠀⠀⠀⠀⠀____________
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2b = - 2
⠀⠀⠀⠀⠀⠀⠀⠀⠀____________
⇒ 2b = - 2
⇒ b = - 1
Substituting the value of 'b' in equation '1' :-
⇒ - a + b = - 3
⇒ - a + (-1) = - 3
⇒ - a - 1 = - 3
⇒ - a = - 3 + 1
⇒ - a = - 2
⇒ a = 2
Therefore, the value of b = - 1 and a = 2
Answer → Option (2) - 1, 2