Math, asked by shalinialok, 5 months ago

If x +1 and x -1 are factors of f(x) = x³ +2 ax +b, calculate the values of a and b.

Answers

Answered by MagicalLove
94

Step-by-step explanation:

 \sf \underline \red{Given:-}

  • A polynomial f(x) = +2ax+b
  • (x+1) and (x-1) are factor of f(x)

 \sf \underline \red{To \:  \:  Find:-}

  • The value of a and b

 \sf \underline \red{Answer:-}

In first case,

f(x) = +2ax+b

g(x) = x+1

g(x) = 0

x+1=0

x=-1

 \sf \therefore \: f( - 1) = 0

 \sf \implies \purple{ {( - 1)}^{3}  + 2 \times a \times ( - 1) + b = 0}

\sf \implies \purple{ - 1 - 2a + b = 0}

\sf \implies \purple{b - 2a = 1}......(1)

In second case,

f(x) = +2ax+b

g(x) = x-1

g(x) = 0

x-1=0

x=1

\sf \implies \purple{ {(1)}^{3}  + 2 \times a(1) + b = 0}

\sf \implies \purple{1 + 2a + b = 0}

\sf \implies \purple{2a + b =  - 1}........(2)

From (1) and (2)

\huge \bf  b \:  \:  -  \:  \: 2a \:  \:  =  \:  \: 1

\huge \bf  \underline{ b \:  \:  +  \:  \: 2a \:  \:  =  \:  \:  - 1}

\huge \bf  \underline{2b \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:   = 0 \:  \:  \:  \:  \: }

now ,

b= 0

Sub b in eq (1)

\sf \implies \purple{b - 2a = 1}

\sf \implies \purple{0 - 2a =  -1}

\sf \implies \purple{a =  -  \frac{1}{2} }

 \therefore \tt \large \green { \: the \:  \: value \:  \: of \:  \: a \:  \: and \:  \: b \:  \: is \:  \:  -  \frac{1}{2}  \:  \: and \:  \: 0 \:  \: respectively \: }


ghlftofjvbl: hi
ghlftofjvbl: hlo
ghlftofjvbl: Bolo
Similar questions