English, asked by llEmberMoonblissll, 1 month ago

. If x +1 and x -1 are factors of f(x) = x³ +2 ax +b, calculate the values of a and b. Using these values of a and b, factorise f(x) completely. 

Answers

Answered by mathdude500
40

\large\underline{\sf{Solution-}}

Given polynomial is

\rm :\longmapsto\:f(x) =  {x}^{3}  + 2ax + b -  -  - (1)

Further Given that,

\red{\rm :\longmapsto\:x + 1 \: is \: a \: factor \: of \: f(x)}

We know,

Factor Theorem states that if a polynomial p(x) is divided by linear polynomial x - a, then remainder is 0.

So, using this concept of Factor Theorem, we have

\rm :\longmapsto\:f( - 1) = 0

\rm :\longmapsto\:{( - 1)}^{3}  + 2a( - 1) + b  = 0

\bf :\longmapsto\: - 1   -  2a + b  = 0 -  -  - (2)

Again, given that

\red{\rm :\longmapsto\:x  -  1 \: is \: a \: factor \: of \: f(x)}

So, by using concept of Factor Theorem, we have

\rm :\longmapsto\:f(  1) = 0

\rm :\longmapsto\:{(1)}^{3}  + 2a(1) + b  = 0

\bf :\longmapsto\:1  + 2a+ b  = 0 -  -  -  - (3)

On adding equation (2) and (3), we get

\rm :\longmapsto\:2b = 0

\rm \implies\:\boxed{ \tt{ \: b \:  =  \: 0 \: }}

On substituting the value of b, in equation (3), we get

\rm :\longmapsto\:1 + 2a = 0

\rm :\longmapsto\:2a =  - 1

\rm \implies\:\boxed{ \tt{ \: a \:  =  \:  -  \:  \frac{1}{2} \: }}

Now, given polynomial can be rewritten as on substituting the values of a and b, we have

\rm :\longmapsto\:f(x) =  {x}^{3} - x

\rm :\longmapsto\:f(x) =  x( {x}^{2} - 1)

\rm :\longmapsto\:f(x) =  x( {x}^{2} -  {1}^{2} )

\rm :\longmapsto\:f(x) =  x( x - 1)(x + 1)

Hence,

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: f(x) =  x( x - 1)(x + 1) \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More Identities to know :-

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions