Math, asked by samdon727, 11 months ago

If (x+1) and (x-1) are the factors of f(x) = x^3 + 2 ax + b . Calculate the values of a and b

Answers

Answered by Anonymous
8

Answer:

\huge\boxed{\fcolorbox{blue}{orange}{HELLO\:MATE}}

Step-by-step explanation:

GIVEN:

♦A polynomialf(x) = x^{3}+2ax+b.

 (x+1) \:and\:(x-1) are the factors of f(x).

TO FIND:

♦The values of a and b.

ANSWER:

In first case:

 (x+1) is\: a \:facto\:r of\: f(x)

So,  x+1=0

=> x =-1

Therefore f(-1) =0.

=>x^{3}+2ax+b =0

=>(-1) ^{3}+2×a×(-1) +b =0

=>-1-2a+b=0

=>b -2a=1 ..................... (1)

______________________________________

In second case:

 (x-1) \:is\:a\:factor\:of \:f(x)

So, (x-1) =0

=> x =1

Therefore f(1)=0

=>x^{3}+2ax+b =0

=>(1) ^{3}+2×a×(1) +b =0

=>1+2a+b=0

=>2a + b=-1 ................ (2)

______________________________________

Now,

\large\red{\boxed{equ^{n}1+equ^{n}2}}

=> b - 2a = 1

± b ± 2a =±1

___________

=> 2b =0

=> b =\dfrac{0}{2}

\large\green{\boxed{ b =0}}

______________________________________

Substituting value of b =0 in equation 1,we have;

=>b-2a =1

=> 0 -2a =1

=> -2a =1

=> a =\dfrac{-1}{2}

\large\purple{\boxed{ a =\dfrac{-1}{2}}}

Therefore values of a and b are \dfrac{-1}{2} and 0 respectively.

\huge\orange{\boxed{a=\dfrac{-1}{2} \:and\: b=0}}

Similar questions