If x -1 and x + 2 are factors of x3+10x2+ ax+b, then find the values of a and b.
Answers
EXPLANATION.
x - 1 and x + 2 are the factor of the equation.
⇒ x³ + 10x² + ax + b.
As we know that,
⇒ x - 1 is a factor of polynomial.
⇒ x - 1 = 0.
⇒ x = 1.
Put the value of x = 1 in equation, we get.
⇒ (1)³ + 10(1)² + a(1) + b = 0.
⇒ 1 + 10 + a + b = 0.
⇒ 11 + a + b = 0.
⇒ b = - 11 - a. - - - - - - (1).
⇒ x - 2 is a factor of polynomial.
⇒ x - 2 = 0.
⇒ x = 2.
Put the value of x = 2 in equation, we get.
⇒ (2)³ + 10(2)² + a(2) + b = 0.
⇒ 8 + 10(4) + 2a + b = 0.
⇒ 8 + 40 + 2a + b = 0.
⇒ 48 + 2a + b = 0. - - - - - (2).
Put the value of equation (1) in equation (2), we get.
⇒ 48 + 2a + [- 11 - a] = 0.
⇒ 48 + 2a - 11 - a = 0.
⇒ 37 + a = 0.
⇒ a = -37.
Put the value of a = -37 in equation (1), we get.
⇒ b = - 11 - a.
⇒ b = - 11 - (-37).
⇒ b = - 11 + 37.
⇒ b = 26.
Values of A = -37 & B = 26.
EXPLANATION.
x - 1 and x + 2 are the factor of the equation.
⇒ x³ + 10x² + ax + b.
As we know that,
⇒ x - 1 is a factor of polynomial.
⇒ x - 1 = 0.
⇒ x = 1.
Put the value of x = 1 in equation, we get.
⇒ (1)³ + 10(1)² + a(1) + b = 0.
⇒ 1 + 10 + a + b = 0.
⇒ 11 + a + b = 0.
⇒ b = - 11 - a. - - - - - - (1).
⇒ x - 2 is a factor of polynomial.
⇒ x - 2 = 0.
⇒ x = 2.
Put the value of x = 2 in equation, we get.
⇒ (2)³ + 10(2)² + a(2) + b = 0.
⇒ 8 + 10(4) + 2a + b = 0.
⇒ 8 + 40 + 2a + b = 0.
⇒ 48 + 2a + b = 0. - - - - - (2).
Put the value of equation (1) in equation (2), we get.
⇒ 48 + 2a + [- 11 - a] = 0.
⇒ 48 + 2a - 11 - a = 0.
⇒ 37 + a = 0.
⇒ a = -37.
Put the value of a = -37 in equation (1), we get.
⇒ b = - 11 - a.
⇒ b = - 11 - (-37).
⇒ b = - 11 + 37.
⇒ b = 26.
Values of A = -37 & B = 26.
_______________________________________________________________