Math, asked by pdsharma141970, 2 days ago

If (x-1) and (x+2) are the factors of f(x)=3x² + ax²-bx+2c, then find the value of a + 2b-c.​

Answers

Answered by ridimasingh2007
4

I tried my best to solve this

HOPE IT WILL HELP

THANK YOU

Question

(x - 2) is a factor of the expression x

3

+ax

2

+bx+6. when this expression is divided by (x - 3) , it leaves the remainder 3. find the values of a and b.

Easy

Solution

verified

Verified by Toppr

Let p(x) = x3 + ax2 + bx +6

(x-2) is a factor of the polynomial x3 + ax2 + b x +6

p(2) = 0

p(2) = 23 + a.22 + b.2 +6 =8+4a+2b+6 =14+ 4a+ 2b = 0

7 +2 a +b = 0

b = - 7 -2a -(i)

x3 + ax2 + bx +6 when divided by (x-3) leaves remainder 3.

p(3) = 3

p(3) = 33 + a.32 + b.3 +6= 27+9a +3b +6 =33+9a+3b = 3

11+3a +b =1 => 3a+b =-10 => b= -10-3a -(ii)

Equating the value of b from (ii) and (i) , we have

(- 7 -2a) = (-10 - 3a)

a = -3

Substituting a = -3 in (i), we get

b = - 7 -2(-3) = -7 + 6 = -1

Thus the values of a and b are -3 and -1 respectively.

THIS WOULD BE RIGHT ANSWER ACCORDING TO ME

Similar questions