if x=1 and y=6 is a solution of the linear equation . 8x-ky+k^2=0 Find the value of k
Answers
Answered by
39
HLO MATE ✋✋
Simran Here !!!!
================================⭐⭐⭐
Given That : x= 1 & y = 6 .....
So, Putting the values of x & y in linear equation....
8x - ky + k^2 = 0
8(1) - k (6) + k^2 = 0
8 - 6k + k^2 = 0
k^2 - 6k + 8 = 0
k^2 - 4k - 2k + 8 = 0
k(k-4) - 2(k-4) = 0
(k- 4) (k-2) = 0
So , k = 4 & k = 2✔✔
===============================⭐⭐⭐
HOPE IT HELPS UH ✌✌
^_^
Simran Here !!!!
================================⭐⭐⭐
Given That : x= 1 & y = 6 .....
So, Putting the values of x & y in linear equation....
8x - ky + k^2 = 0
8(1) - k (6) + k^2 = 0
8 - 6k + k^2 = 0
k^2 - 6k + 8 = 0
k^2 - 4k - 2k + 8 = 0
k(k-4) - 2(k-4) = 0
(k- 4) (k-2) = 0
So , k = 4 & k = 2✔✔
===============================⭐⭐⭐
HOPE IT HELPS UH ✌✌
^_^
Answered by
36
Hey there!
The given values x = 1 and y = 6
equation :- 8x - ky + k² = 0
If we substitute, we get,
( 8 ) ( 1 ) - ( k ) ( 6 ) + k² = 0
8 - 6k + k² = 0
k² - 6k + 8 = 0
If we take the factors of the number 8 and elaborate it, we get
k² - 2k - 4k + 8 = 0
k ( k - 2 ) - 4 ( k - 2 ) = 0
( k - 4 ) ( k - 2 ) = 0
Now, k has 2 values,
k - 4 = 0 AND k - 2 = 0
k = 4 AND k = 2
K = 4 , 2
Hope my answer helps!
Similar questions