Math, asked by Monotoshsarkar1967, 11 months ago

if X + 1 by x is equal to 6 find x square minus one by x square​

Answers

Answered by RvChaudharY50
69

Given :-

  • (x + 1/x) = 6

To Find :-

  • (x² - 1/x)² = ?

Solution :-

(x + 1/x) = 6

Squaring Both Sides we get,

(x + 1/x)² = 6²

→ x² + 1/x² + 2 * x * 1/x = 36

→ x ² + 1/x² = 36 - 2

→ x² + 1/x² = 34

Subtracting 2 both sides now,

x² + 1/x² - 2 = 34 - 2

→ x² + 1/x² - 2 * x * 1/x = 32

→ (x - 1/x)² = 32

→ (x - 1/x) = √32 = ±4√2.

_______________________

So,

( - 1/)

(x + 1/x)(x - 1/x)

→ 6 * (±4√2)

→ ±24√2 (Ans).


Anonymous: Great
Answered by Anonymous
57

Question:

x +  \frac{1}{x}  = 6  \: then\: find \:  {x}^{2}  -  \frac{1}{x}

Answer:

Given

x +  \frac{1}{x}  = 6 \\  \\ squaring \: both \: side \\  \\  {(x +  \frac{1}{x} )}^{2}  = ( {6})^{2}  \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2x \frac{1}{x}  = 36 \\  \\  {x}^{2}  +  \frac{1}{x}  + 2 = 36 \\  \\  {x}^{2}  +  \frac{1}{x}  = 36 - 2 \\  \\  {x}^{2}  +  \frac{1}{x}  = 34

Now ,sub 2 both side

 {x}^{2}  +  \frac{1}{ {x}^{2} } - 2 = 34 - 2 \\  \\   \because \: ( {x} -   \frac{1}{ {x}} )^{2}  =  {x}^{2} + \frac{1}{ {x}^{2} }  - 2 \\  \\  ({x}   -\frac{1}{ {x}} )^{2}  = 32 \\  \\  {x} -  \frac{1}{ {x}}  =  \sqrt{32}

Then,

(x +  \frac{1}{x} )(x -  \frac{1}{x}) =  {x}^{2}   -  \frac{1}{ {x}^{2} }  \\  \\  (6) \times \sqrt{32}  =  {x}^{2}  -  \frac{1}{ {x}^{2} }  \\  \\ 6 \sqrt{32}  =  {x}^{2}  -  \frac{1}{ {x}^{2} }


Anonymous: Great :)
Similar questions